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Abstract
Double-quantitative decision-theoretic rough set (Dq-DTRS), as a new model considering double quantification to reflect 
the distinct degrees of quantitative information, satisfies the quantitative completeness properties and exhibits much 
stronger fault tolerance capabilities than decision-theoretic rough set (DTRS) and graded rough set (GRS). Since the Dq-
DTRS was proposed, there have been few studies on the uncertainty analysis of the model. In this paper, we investigate 
the uncertainty measure of the four disjoint regions in Dq-DTRS models by introducing a fuzziness formula for rough 
set, and then describe the changing regularities of fuzziness of disjoint regions in DqI-DTRS model and DqII-DTRS 
model along with the variation of two parameters �, � and the grade k, respectively. In addition, three kinds of incre-
mental information for Dq-DTRS model, namely useful incremental information, useless incremental information and 
error-correction incremental information are presented being formed with regard to the changes of boundary regions, 
and also the related assessment methods for these special types of incremental information are discussed in the form of 
several important theorems.

Keywords Decision-theoretic rough set · Double quantification · Graded rough set · Incremental information · Uncertainty 
measure

1 Introduction

Rough set theory [37] has been confirmed successful appli-
cations in many science and engineering fields, such as pat-
tern recognition, data mining, image processing, medical 
diagnosis and others. Pawlak rough set has a severe limita-
tion. The relationship between equivalence classes and the 
basic set are strict that there are no fault tolerance mech-
anisms, the quantitative information about the degree of 
overlap of the equivalence classes and the basic set is not 
taken into consideration. That is to say, Pawlak rough set 
does not cope well with quantitative problems in the real-
life applications. Improving the Pawlak rough set model 
with quantitative information is a promising direction and 
expansions of the model that include such quantification are 
of particular relevance [29, 60]. The improved models are 
called quantitative rough set models, including probabilistic 
rough set (PRS) model [57, 59], graded rough set (GRS) 
model [30, 61], and double-quantitative rough set model 
[11, 21–23, 55, 70–73]. As pointed out in [73, 74], PRS and 
GRS are the two different and typical single-quantitative 
rough set models.
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PRS model exhibits many merits, such as the measur-
ability of the probabilistic information, the generality and 
flexibility of the model and its insensitivity to noise [31, 
39, 40, 58, 62]. PRS model and its generalizations can be 
formulated based on the notion of rough membership func-
tions and rough inclusion. Threshold values, serving as 
parameters, are applied to a rough membership function 
or a rough inclusion to obtain probabilistic or parameter-
ized approximations. Three kinds of PRS models have been 
proposed and studied intensively, which are decision-the-
oretic rough set (DTRS) model [16, 17, 29, 31, 43–45, 62, 
67], variable precision rough set model [77], and Bayesian 
rough set model [76]. The main differences among these 
models are their different, but equivalent, formulations of 
probabilistic approximations and interpretations of the 
required parameters. Since Yao and Lin explored the rela-
tionships between rough set and modal logic, they pro-
posed the GRS model based on graded modal logic [61]. 
GRS model primarily considers the absolute quantitative 
information regarding the basic concept and knowledge 
granules, and it is also a generalization of the Pawlak rough 
set model. The regions of the GRS model also extend the 
corresponding notions used in the classical rough set 
models.

The DTRS and GRS are two fundamental expansion mod-
els that achieve strong fault tolerance capabilities by utiliz-
ing quantitative descriptions [23]. The relative and absolute 
measures reflect relative accuracy and absolute accuracy or 
fault tolerance from two different quantitative viewpoints. 
Relative quantitative information and absolute quantitative 
information are two kinds of quantification mythologies 
encountered in certain applications. Double quantification 
regarding their fusion has visible semantic background and 
feasibility. For this purpose, several works related to the 
double-quantitative information have been explored [11, 
21–23, 55, 71–74]. Zhang et al. made a comparative study 
of variable precision rough set model and GRS model [74], 
and investigated the quantitative information architecture in 
the double-quantitative approximation space of precision and 
grade [72], and defined a double-quantitative fusion of cau-
sality measure to construct a granular computing platform 
and hierarchical reduction system [71]. Li et al. confirmed 
two kinds of Dq-DTRS model based on Bayesian decision 
procedure and GRS, which essentially indicate the relative 
and absolute quantification [23], and then further presented 
the information measure of relative quantification and abso-
lute quantification [22]. From the examples in [23, 73], we 
can see that both quantification indexes exhibit a close, 
supplementary, and dialectical relationship, and each one 
actually has its own representation virtues and application 
environments.

As one of the most important issues in rough set the-
ory, uncertainty measures have been widely studied in the 

references [1, 2, 9, 10, 34, 35, 41, 42, 46, 53, 68, 69]. Pawlak 
presented several numerical measures such as accuracy and 
roughness of a set, and approximation accuracy of a rough 
classification [38]. Rough set theory may be a suitable math-
ematical tool for dealing with vagueness and uncertainty 
[38]. Many typical uncertain measures, such as roughness 
[2], approximation accuracy [9], rough entropy [28], fuzzy 
entropy [12], and fuzziness [4], had been proposed accord-
ingly. Most recently, Zhang et al. analyzed the change rules 
of uncertainty of PRS model with changing knowledge 
spaces [69], and defined three kinds of incremental informa-
tion for PRS model [68]. As reported in [68], the uncertainty 
for Pawlak rough set comes from the boundary region; in 
PRS model and its generalizations, objects belong to every 
region with a pair of thresholds, so the uncertainty for PRS 
comes from all three regions, namely positive, negative and 
boundary regions.

In Dq-DTRS model, the domain is classified into four 
disjoint regions, which are positive region, negative region, 
upper boundary region and lower boundary region. With 
the increment of attributes, the disjoint regions in Dq-
DTRS models will constantly change according to the new 
attribute set and the uncertainty of the disjoint regions will 
have corresponding changes. There have been a lot of stud-
ies on dynamic information systems in the literature of 
rough sets, including the changes of attribute values [3, 
5, 7], object sets [6, 32, 33, 65], and attribute sets [19, 20, 
66]. However, there was no relevant research on the uncer-
tainty or variation for the Dq-DTRS model with increasing 
new attributes. Inspired by the pioneer work [68], in this 
study, we focus on the fuzziness of disjoint regions in Dq-
DTRS model and study the change regularities of fuzziness 
with changing approximation spaces. The main contents 
and innovation of this paper are shown as: (1) The fuzzi-
ness of four disjoint regions in Dq-DTRS is investigated 
by introducing a fuzziness formula presented in reference 
[68]. And the changing regularities of the fuzziness of dis-
joint regions in Dq-DTRS are discovered along with the 
variation of two parameters � , � and the grade k. (2) The 
effects of attribute increment on the variation of disjoint 
regions in Pawlak rough set, DTRS and Dq-DTRS models 
are compared and three kinds of incremental information 
for Dq-DTRS are presented. (3) Related judgment methods 
for the special types of incremental information for Dq-
DTRS are discussed in the form of important theorems. 
These theorems are useful for understanding the variation 
of the four disjoint regions in Dq-DTRS model when add-
ing new attributes.

The paper is organized as follows. Related concepts 
and definitions are introduced briefly in Section  2. In 
Section 3, we make a review of the fuzziness of the three 
decision regions in Pawlak rough set model and DTRS 
model, respectively. In Section 4, we present the fuzziness 
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of Dq-DTRS from their four disjoint regions, and we also 
make comparisons on the regions changed among Pawlak 
rough set, DTRS and Dq-DTRS models. In Section 5, we 
define three kinds of incremental information for Dq-DTRS 
model with regions changing. Finally, Section 6 covers 
some conclusions.

2  Basic notions

For a non-empty and finite set U, which is called the uni-
verse, a fuzzy set A on U is characterized by a membership 
function �A(x) [64], where �A ∶ U → [0, 1] . �A(x) is called 
the membership degree to A of the object x ∈ U.

Definition 2.1 (Fuzziness [15]) Let U = {x1, x2,… , xn} be a 
finite domain, and A, B be two fuzzy sets on U. If a mapping 
H ∶ F(U) → [0, 1] (F(U) is a set of all fuzzy subsets on U) 
satisfies the conditions as follows:

(1) H(A) = 0 if and only if A ∈ P(U), where P(U) is a 
power set on U.

(2) H(A) = 1 if and only if (∀ xi ∈ U) A(xi) = 0.5.
(3) For any xi ∈ U , if B(xi) ≤ A(xi) ≤ 0.5 or B(x

i
) ≥ A(x

i
)

≥ 0.5 , then H(B) ≤ H(A).
(4) For any A ∈ F(U), H(A) = H(Ac) , Ac denotes the com-

plementary set of A.

H(∙) is called fuzziness of a fuzzy set.
Any formula satisfying the above Definition 2.1 is called 

a fuzziness formula. Motivated by different purposes, 
researchers proposed various fuzziness formulas. Regard-
ing the fuzziness modeling in the perspective of general 
machine learning, Wang et al. investigated a relationship 
between the fuzziness of a classifier and the misclassifica-
tion rate of the classifier on a group of samples [48], and 
proposed a non-naive Bayesian classifier where the inde-
pendence assumption is removed and the marginal esti-
mation is replaced by the joint estimation [49]. In order 
to make the best use of the individual classifiers and their 
combinations, Wang et al. presented a novel approach to 
classifier fusion based on upper integrals [50], and offered 
sound evidence behind the observation that higher fuzzi-
ness of a fuzzy classifier may imply better generalization 
aspects of the classifier [52], then two diversity criteria are 
addressed for multiple-instance active learning by utilizing 
a support vector machine based multiple-instance learning 
classifier [47], they also provided some useful guidelines 
for improving the generalization ability of classifiers by 
adjusting uncertainty from the viewpoint of complexity of 
classification [51]. In order to better measure fuzziness of 
a rough set, the following fuzziness formula for rough set 
was presented in [4] as follows:

where FX
R
=
∑n

i=1
(�FX

R
(xi)∕xi) is a fuzzy set on U, and 

�FX
R
(xi) = |X ∩ [xi]R|∕|[xi]R|.

Let S = (U,A) be an information system. Here 
U = {x1, x2,… , xn} is a non-empty and finite set and 
A = {a1, a2,… , am} is an attribute set. The class of all sub-
sets of U is denoted by P(U). For X ∈ P(U) , the equivalence 
relation R induced by A in a Pawlak approximation space 
(U, R) partitions the universe U into disjoint subsets. Such a 
partition of the universe is a quotient set of U and is denoted 
by U∕R = {[x]R|x ∈ U} , where [x]R = {y ∈ U|(x, y) ∈ R} is 
the equivalence class containing x with respect to R.

Definition 2.2 (Pawlak rough set [37]) Given an information 
system S = (U,A) and an equivalence relation R. For any 
X ⊆ U , one can characterize X by a pair of upper and lower 
approximations which are

If R(X) = R(X) , X is called definable set or crisp set in 
rough approximation space; and if R(X) ≠ R(X) , then X is 
called Pawlak rough set. Obviously, both upper approxi-
mation R(X) and lower approximation R(X) of a target set 
X are two sets. Three disjoint regions can be obtained: 
P(X) = R(X),N(X) =∼ R(X) and B(X) = R(X) − R(X) are 
called the positive region, negative region, and boundary 
region of X, respectively. These three regions constitute a 
partition of U, denoted as �(X) = {P(X),N(X),B(X)}.

In Pawlak rough set, the relationships between equiva-
lence classes and the basic set are strict that there are no fault 
tolerance mechanisms. Quantitative information about the 
degree of overlap of the equivalence classes and the basic 
set is not taken into consideration. Therefore, neither wider 
relationships nor quantitative information can be utilized. 
Naturally the studies of PRS and GRS regard to relative 
quantitative information and absolute quantitative informa-
tion are presented, respectively. As a special PRS model, 
DTRS based on Bayesian decision principle [8] was initially 
proposed by Yao [56].

Definition 2.3 (DTRS [56]) Given an information system 
S = (U,A) and an equivalence relation R. For any X ⊆ U , 
the upper and lower approximations based on thresholds �, � 
( 0 ≤ 𝛽 < 𝛼 ≤ 1 ) of the DTRS model are defined as follows.

H(FX
R
) =

−1

n ln 2

n∑

i=1

(�FX
R
(xi) ln�FX

R
(xi))

+ (1 − �FX
R
(xi)) ln(1 − �FX

R
(xi)),

R(X) = {x ∈ U|[x]R ∩ X ≠ �},

R(X) = {x ∈ U|[x]R ⊆ X}.
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If R
(�,�)

(X) = R(�,�)(X) , then X is a definable set, otherwise 
X is a rough set. P(�,�)(X) = R

(�,�)
(X) , N(�,�)(X) =∼ R(�,�)(X) , 

B(�,�)(X) = R(�,�)(X) − R
(�,�)

(X) are the positive region, nega-
tive region and boundary region, respectively.

The GRS is different from the DTRS in the description 
of quantification.

Definition 2.4 (GRS [61]) Suppose k is a non-negative inte-
ger and is called “grade”,

are called grade k upper and lower approximations of X, 
respectively. If Rk(X) = R

k
(X) , then X is called a defin-

able set by grade k; otherwise, X is called a rough set by 
grade k.

Because the inclusion relation of the grade approxima-
tion does not hold any longer, positive and negative regions, 
upper and lower boundary regions are naturally proposed. 
We form the following regions:

where Pk(X),Nk(X),Uk(X), Lk(X) and Bk(X) are called grade 
k positive region, negative region, upper boundary region, 
lower boundary region, and boundary region of X.

In reference [23], authors constructed two kinds of Dq-
DTRS model, which can indicate the relative and absolute 
quantification simultaneously.

Definition 2.5 (DqI-DTRS [23]) The following upper and 
lower approximation operators are defined as

R(𝛼,𝛽)(X) =

{
x ∈ U|

|[x]R ∩ X|
|[x]R|

> 𝛽

}
,

R
(𝛼,𝛽)

(X) =

{
x ∈ U|

|[x]R ∩ X|
|[x]R|

≥ 𝛼

}
.

Rk(X) = {x ∈ U| |[x]R ∩ X| > k},

R
k
(X) = {x ∈ U| |[x]R| − |[x]R ∩ X| ≤ k}

Pk(X) = Rk(X) ∩ R
k
(X);

Nk(X) =∼ (Rk(X) ∪ R
k
(X));

Uk(X) = Rk(X) − R
k
(X);

Lk(X) = R
k
(X) − Rk(X);

Bk(X) = UbNk(X) ∪ LbNk(X),

R
I

(𝛼,𝛽,k)
(X) =

{
x ∈ U|

|[x]R ∩ X|
|[x]R|

> 𝛽

}
,

RI
(𝛼,𝛽,k)

(X) =
{
x ∈ U| |[x]R| − |[x]R ∩ X| ≤ k

}
.

From the above two operators, the DqI-DTRS model can be 
established, and denoted by (U,R

I

(�,�,k)
,RI

(�,�,k)
) . The positive 

region, negative region, upper boundary region and lower 
boundary region are obtained as

According to different parameters � , � and different grade 
k, we can obtain the above different regions. These disjoint 
four regions constitute a partition of the universe U, and this 
partition is denoted by

Definition 2.6 (DqII-DTRS [23]) The model (U,R
II

(�,�,k)
,

R
II

(�,�,k)
) called DqII-DTRS, is defined using the following 

two operators R
II

(�,�,k)
 and RII

(�,�,k)
,

The positive region, negative region, upper boundary region 
and lower boundary region are obtained as

These disjoint four regions constitute a partition of the uni-
verse U, and this partition is denoted by

PI
(�,�,k)

(X) = R
I

(�,�,k)
(X) ∩ RI

(�,�,k)
(X);

NI
(�,�,k)

(X) =∼ (R
I

(�,�,k)
(X) ∪ RI

(�,�,k)
(X));

UI
(�,�,k)

(X) = R
I

(�,�,k)
(X) − RI

(�,�,k)
(X);

LI
(�,�,k)

(X) = RI
(�,�,k)

(X) − R
I

(�,�,k)
(X).

�
I,R

(�,�,k)
(X) = (PI

(�,�,k)
(X),NI

(�,�,k)
(X),

UI
(�,�,k)

(X), LI
(�,�,k)

(X)).

R
II

(𝛼,𝛽,k)
(X) = {x ∈ U||[x]R ∩ X| > k},

RII
(𝛼,𝛽,k)

(X) =

{
x ∈ U|

|[x]R ∩ X|
|[x]R|

≥ 𝛼

}
.

PII
(�,�,k)

(X) = R
II

(�,�,k)
(X) ∩ RII

(�,�,k)
(X);

NII
(�,�,k)

(X) =∼ (R
II

(�,�,k)
(X) ∪ RII

(�,�,k)
(X));

UII
(�,�,k)

(X) = R
II

(�,�,k)
(X) − RII

(�,�,k)
(X);

LII
(�,�,k)

(X) = RII
(�,�,k)

(X) − R
II

(�,�,k)
(X).

�
II,R

(�,�,k)
(X) = (PII

(�,�,k)
(X),NII

(�,�,k)
(X),

UII
(�,�,k)

(X), LII
(�,�,k)

(X)).
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3  A review of measuring fuzziness of Pawlak 
rough set and DTRS from disjoint regions

The analysis on the fuzziness of disjoint regions is helpful 
in improving classification quality. The DTRS has a bet-
ter fault tolerance ability to compare with Pawlak rough set 
model. With the variation of parameters, not only the objects 
in the boundary region, but also the objects in the positive 
or negative regions may be re-classified. In this section, we 
review the fuzziness of Pawlak rough set and DTRS from 
their three regions.

Definition 3.1 [68] Let U = {x1, x2,… , xn} be a non-empty 
finite set, P�

= {P
�

1
,P

�

2
,… ,P

�

l
} and P��

= {P
��

1
,P

��

2
,… ,P

��

l
} be 

two partitions U. If ∀ P
�

i
∈ P

� , ∃ P
��

j
∈ P

�� s. t. P′

i
⊆ P

′′

j
 , then 

P
′ is finer than P′′ , denoted as P�

⪯ P
�� . If P�

⪯ P
�� , and 

∃ P
�

i
∈ P

� , ∃ P
��

j
∈ P

�� s. t. P′

i
⊂ P

′′

j
 , then P′ is strictly finer than 

P
′′ , denoted as P′

≺ P
′′

.

Definition 3.2 [68] Given an information system S = (U,A) 
and an equivalence relation R. For any X ⊆ U , the fuzzi-
ness of three regions in Pawlak rough set is determined in 
the following:

And HR(X) = HR(P(X)) + HR(N(X)) + HR(B(X)) is regarded 
as the fuzziness of the partition �(X).

The uncertainty semantic represented by fuzziness for-
mulas HR(X) , HR(P(X)) ,  HR(N(X)) and HR(B(X)) are con-
sistent with the definition of fuzziness in Definition 2.1. The 
greater the value of HR(⧫) (where ⧫ represents for 
P(X),N(X), and B(X), respectively), the greater the fuzziness 
of the represented region ⧫ , and the greater the uncertainty 
of ⧫ . It should be pointed out that |P(X)∩X||P(X)| = 1, |N(X)∩X||N(X)| = 0, 

0 ≤
|B(X)∩X|
|B(X)| ≤ 1. So we can obtain HR(P(X)) = HR(N(X)) = 0 

and 0 ≤ HR(B(X)) ≤ 1 . That is to say, HR(X) = HR(B(X)).

HR(P(X)) = −
|P(X)|
|U| ln 2

[(
|P(X) ∩ X|
|P(X)|

ln
|P(X) ∩ X|
|P(X)|

+

(
1 −

|P(X) ∩ X|
|P(X)|

)
ln

(
1 −

|P(X) ∩ X|
|P(X)|

)]
;

HR(N(X)) = −
|N(X)|
|U| ln 2

[(
|N(X) ∩ X|
|N(X)|

ln
|N(X) ∩ X|
|N(X)|

+

(
1 −

|N(X) ∩ X|
|N(X)|

)
ln

(
1 −

|N(X) ∩ X|
|N(X)|

)]
;

HR(B(X)) = −
|B(X)|
|U| ln 2

[(
|B(X) ∩ X|
|B(X)|

ln
|B(X) ∩ X|
|B(X)|

+

(
1 −

|B(X) ∩ X|
|B(X)|

)
ln

(
1 −

|B(X) ∩ X|
|B(X)|

)]
.

For an information system S = (U,A) ,  where 
U = {x1, x2,… , xn} is an object set, A is an attribute set, R1 
and R2 are two subsets of A, and X ⊆ U is a target set. If 
R1 ⊆ R2 , then HR1 (X) ≥ HR2 (X) . This property shows that 
the uncertainty of a target concept in Pawlak rough set model 
will become much less fuzzy when the equivalence classes 
in rough approximation space (U, A) are subdivided.

DTRS and its generalizations were formed by a pair 
of parameters � and � ( 0 ≤ 𝛽 < 𝛼 ≤ 1 ) obtained from the 
Bayesian decision principle. In reference [68], authors made 
a detailed study on the uncertainty of three regions in the 
PRS model. As a special PRS model, the uncertainty of three 
regions in the DTRS model is similar to the PRS model.

Compared with Pawlak rough set model, the positive and 
negative regions will become larger and the boundary region 
will become smaller due to this pair of thresholds. These are 
shown in Figure 1. These three probabilistic positive, nega-
tive and boundary regions constitute a partition of U, and 
this partition is described as

Definition 3.3 The fuzziness of three regions in DTRS is 
represented as

The method for quantifying fuzziness of DTRS model 
adheres to the following expression

�(�,�)(X) = {P(�,�)(X),N(�,�)(X),B(�,�)(X)}.

HR(P(�,�)(X)) = −
|P(�,�)(X)|
|U| ln 2

[(|P(�,�)(X) ∩ X|
|P(�,�)(X)|

ln
|P(�,�)(X) ∩ X|
|P(�,�)(X)|

+

(
1 −

|P(�,�)(X) ∩ X|
|P(�,�)(X)|

)

ln

(
1 −

|P(�,�)(X) ∩ X|
|P(�,�)(X)|

)]
;

HR(N(�,�)(X)) = −
|N(�,�)(X)|
|U| ln 2

[(|N(�,�)(X) ∩ X|
|N(�,�)(X)|

ln
|N(�,�)(X) ∩ X|
|N(�,�)(X)|

+

(
1 −

|N(�,�)(X) ∩ X|
|N(�,�)(X)|

)

ln

(
1 −

|N(�,�)(X) ∩ X|
|N(�,�)(X)|

)]
;

HR(B(�,�)(X)) = −
|B(�,�)(X)|
|U| ln 2

[(|B(�,�)(X) ∩ X|
|B(�,�)(X)|

ln
|B(�,�)(X) ∩ X|
|B(�,�)(X)|

+

(
1 −

|B(�,�)(X) ∩ X|
|B(�,�)(X)|

)

ln

(
1 −

|B(�,�)(X) ∩ X|
|B(�,�)(X)|

)]
.

HR
(�,�)

(X) = HR(P(�,�)(X)) + HR(N(�,�)(X)) + HR(B(�,�)(X)).
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In the DTRS model, a certain level of erroneous decisions 
needs to be tolerated with probabilistic approximations, and 
this offers a new view for rule induction, which is absent 
from the classical rough set model. However, these exten-
sions of rough set have a certain fault tolerance ability level 
to deal with uncertain objects, so the objects in three regions 
have different degrees of uncertainty.

Let us discuss parameter relationships for the fuzziness of 
three regions, and also for fuzziness of DTRS model. If the 
two parameters � = 1 and � = 0 in a DTRS model, then the 
DTRS degenerates into Pawlak rough set model. Given 
(�1, �1) and (�2, �2) , where 0 ≤ 𝛽1 ≤ 𝛽2 < 𝛼2 ≤ 𝛼1 ≤ 1 . With 
the existence of the relationships between fuzziness of disjoint 
regions: HR(P(�1,�1)

(X)) ≤ HR(P(�2,�2)
(X)), HR(N(�

1

,�
1

)(X))

≤ H
R(N(�

2

,�
2

)(X)) and HR(B(�1,�1)
(X)) ≥ HR(B(�2,�2)

(X)), so  
the values of HR

(�1,�1)
(X) and HR

(�2,�2)
(X) cannot be compared. 

That is to say, there is no monotonicity among different pairs  
of parameters (�1, �1) , … , (�k, �k) , … , (�n, �n) , where 
0 ≤ 𝛽1 ≤ ⋯ ≤ 𝛽k ≤ ⋯ ≤ 𝛽n < 𝛼n ≤ ⋯ ≤ 𝛼k ⋯ ≤ 𝛼1 ≤ 1.

Theorem  3.1 [68]  Given an information system 
S = (U,A,V , f ), and two parameters �, � . R1 and R2 are two 
subsets of A, and X ⊆ U is a target set. If R1 ⊆ R2, then 
H

R2

(�, �)
(X) ≤ H

R1

(�, �)
(X).

Proof The proof of Theorem 3.1 can be seen in [68].   □

This property shows that the uncertainty of a target con-
cept in DTRS will become much less fuzzy when the equiva-
lence classes are subdivided.

4  Measure fuzziness of Dq‑DTRS 
from the disjoint regions

In this section, we focus on Dq-DTRS model. We will 
analyze the fuzziness (a kind of uncertainty) of Dq-DTRS 
model from their disjoint regions.

Definition 4.1 The method for quantifying fuzziness of DqI-
DTRS is in the following:

where HR(PI
(�,�,k)

(X)) , HR(NI
(�,�,k)

(X)) , HR(UI
(�,�,k)

(X)) and 

HR(LI
(�,�,k)

(X)) are fuzziness of positive region, negative 

region, upper boundary region and lower boundary region 
in terms of DqI-DTRS model, respectively. The forms of 
these four fuzziness formulas are

H
I,R

(�,�,k)
(X) =HR(PI

(�,�,k)
(X)) + HR(NI

(�,�,k)
(X))

+ HR(UI
(�,�,k)

(X)) + HR(LI
(�,�,k)

(X)),

Obviously, HR(PI

(�,�,k)
(X)) ≥ 0 , HR(NI

(�,�,k)
(X)) ≥ 0 , HR(UI

(�,�,k)

(X)) ≥ 0 and HR(LI
(�,�,k)

(X)) ≥ 0 . So the analysis on the fuzz-

iness of the DqI-DTRS model is much more complicated 
than that of Pawlak rough set model.

Theorem 4.1 Given an information system S = (U,A) and 
an equivalence relation R. For any target set X ⊆ U, for the 
same k, if 0 ≤ 𝛽1 ≤ 𝛽2 < 𝛼2 ≤ 𝛼1 ≤ 1, then

• HR(PI
(�1,�1,k)

(X)) ≥ HR(PI
(�2,�2,k)

(X));

• HR(NI
(�1,�1,k)

(X)) ≤ HR(NI
(�2,�2,k)

(X));

• HR(UI
(�1,�1,k)

(X)) ≥ HR(UI
(�2,�2,k)

(X));

• HR(LI
(�1,�1,k)

(X)) ≤ HR(LI
(�2,�2,k)

(X)).

HR(PI
(�,�,k)

(X)) = −
|PI

(�,�,k)
(X)|

|U| × ln 2

[
|PI

(�,�,k)
(X) ∩ X|

|PI
(�,�,k)

(X)|

ln
|PI

(�,�,k)
(X) ∩ X|

|PI
(�,�,k)

(X)|
+

(
1 −

|PI
(�,�,k)

(X) ∩ X|

|PI
(�,�,k)

(X)|

)

ln

(
1 −

|PI
(�,�,k)

(X) ∩ X|

|PI
(�,�,k)

(X)|

)]
,

HR(NI
(�,�,k)

(X)) = −
|NI

(�,�,k)
(X)|

|U| × ln 2

[
|NI

(�,�,k)
(X) ∩ X|

|NI
(�,�,k)

(X)|

ln
|NI

(�,�,k)
(X) ∩ X|

|NI
(�,�,k)

(X)|
+

(
1 −

|NI
(�,�,k)

(X) ∩ X|

|NI
(�,�,k)

(X)|

)

ln

(
1 −

|NI
(�,�,k)

(X) ∩ X|

|NI
(�,�,k)

(X)|

)]
,

HR(UI
(�,�,k)

(X)) = −
|UI

(�,�,k)
(X)|

|U| × ln 2

[
|UI

(�,�,k)
(X) ∩ X|

|UI
(�,�,k)

(X)|

ln
|UI

(�,�,k)
(X) ∩ X|

|UI
(�,�,k)

(X)|
+

(
1 −

|UI
(�,�,k)

(X) ∩ X|

|UI
(�,�,k)

(X)|

)

ln

(
1 −

|UI
(�,�,k)

(X) ∩ X|

|UI
(�,�,k)

(X)|

)]
,

HR(LI
(�,�,k)

(X)) = −
|LI

(�,�,k)
(X)|

|U| × ln 2

[
|LI

(�,�,k)
(X) ∩ X|

|LI
(�,�,k)

(X)|

ln
|LI

(�,�,k)
(X) ∩ X|

|LI
(�,�,k)

(X)|
+

(
1 −

|LI
(�,�,k)

(X) ∩ X|

|LI
(�,�,k)

(X)|

)

ln

(
1 −

|LI
(�,�,k)

(X) ∩ X|

|LI
(�,�,k)

(X)|

)]
.
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Proof Let f(a, b) be a function with two variables a and b 
as follows:

The partial derivatives of f(a, b) is

Therefore, f(a, b) is a monotonically increasing function 
with variables a and b, respectively.

When 0 ≤ 𝛽1 ≤ 𝛽2 < 𝛼2 ≤ 𝛼1 ≤ 1 , it can be seen that 
R
(�1,�1)

(X) ≤ R
(�2,�2)

(X) and R(�1,�1)
(X) ≥ R(�2,�2)

(X) . Accord-

ing to the definition of the four regions in DqI-DTRS model, 
one has

when 0 ≤ 𝛽1 ≤ 𝛽2 < 𝛼2 ≤ 𝛼1 ≤ 1 , it can be observed that

f (a, b) = −
1

n ln 2
[a ln a + b ln b − (a + b) ln(a + b)].

𝜕f (a, b)

𝜕a
=

−1

n ln 2
ln

a

a + b
> 0,

𝜕f (a, b)

𝜕b
=

−1

n ln 2
ln

a

a + b
> 0.

PI
(�,�,k)

(X) = R(�,�)(X) ∩ R
k
(X);

NI
(�,�,k)

(X) =∼ (R(�,�)(X) ∪ R
k
(X));

UI
(�,�,k)

(X) = R(�,�)(X) − R
k
(X);

LI
(�,�,k)

(X) = R
k
(X) − R(�,�)(X),

PI
(𝛼1,𝛽1,k)

(X) ⊇ PI
(𝛼2,𝛽2,k)

(X);

NI
(𝛼1,𝛽1,k)

(X) ⊆ NI
(𝛼2,𝛽2,k)

(X);

UI
(𝛼1,𝛽1,k)

(X) ⊇ UI
(𝛼2,𝛽2,k)

(X);

LI
(𝛼1,𝛽1,k)

(X) ⊆ LI
(𝛼2,𝛽2,k)

(X).

From the fuzziness formula of positive region, negative 
region, upper boundary region and lower boundary region 
in terms of DqI-DTRS model, we obtain

where ⧫ = PI
(�,�,k)

(X),NI
(�,�,k)

(X),UI
(�,�,k)

(X) and LI
(�,�,k)

(X) , 

respectively.
Suppose a = |⧫| and b = |⧫| − |⧫ ∩ X| . Then we have

Because PI
(𝛼1,𝛽1,k)

(X) ⊇ PI
(𝛼2,𝛽2,k)

(X), NI

(𝛼
1

,𝛽
1

,k)
(X) ⊆ N

I

(𝛼
2

,𝛽
2

,k)
(X), 

UI
(𝛼1,𝛽1,k)

(X) ⊇ UI
(𝛼2,𝛽2,k)

(X), and  LI
(𝛼1,𝛽1,k)

(X) ⊆ LI
(𝛼2,𝛽2)

(X), 

according to the monotonicity increasing of f(a, b), we can 
obtain that

The proof has been completed.   □

HR(⧫) = −
|⧫|

|U| × ln 2

[|⧫ ∩ X|
|⧫|

ln
|⧫ ∩ X|
|⧫|

+

(
1 −

|⧫ ∩ X|
|⧫|

)
ln

(
1 −

|⧫ ∩ X|
|⧫|

)]
,

HR(⧫) = −
(a + b)

n ln 2

[
a

a + b
ln

a

a + b
+

b

a + b
ln

b

a + b

]

= −
1

n ln 2
[a ln a + b ln b − (a + b) ln(a + b)].

HR(PI
(�1,�1,k)

(X)) ≥ HR(PI
(�2,�2,k)

(X));

HR(NI
(�1,�1,k)

(X)) ≤ HR(NI
(�2,�2,k)

(X));

HR(UI
(�1,�1,k)

(X)) ≥ HR(UI
(�2,�2,k)

(X));

HR(LI
(�1,�1,k)

(X)) ≤ HR(LI
(�2,�2,k)

(X)).

Fig. 1  Variation of disjoint 
regions from Pawlak rough set 
to DTRS
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For the same grade k, it can be seen form the above Theo-
rem 4.1 that if the two pairs of (�1, �1) and (�2, �2) satisfy 
0 ≤ 𝛽1 ≤ 𝛽2 < 𝛼2 ≤ 𝛼1 ≤ 1 , then Theorem 4.1 provides a 
judgement method for comparing the fuzziness of the four 
disjoint region in DqI-DTRS model.

Theorem 4.2 Given an information system S = (U,A) and 
an equivalence relation R. For any target set X ⊆ U, for 
the same �, �, if 0 ≤ k1 < k2 ≤ |U|, then for the DqI-DTRS 
model, we can establish the following formulas:

• HR(PI
(�,�,k1)

(X)) ≤ HR(PI
(�,�,k2)

(X));

• HR(NI
(�,�,k1)

(X)) ≥ HR(NI
(�,�,k2)

(X));

• HR(UI
(�,�,k1)

(X)) ≥ HR(UI
(�,�,k2)

(X));

• HR(LI
(�,�,k1)

(X)) ≤ HR(LI
(�,�,k2)

(X)).

Proof When k1 < k2 , then R
k1
(X) ≤ R

k2
(X) and R

k
1

(X) ≥

R
k
2

(X) . Then for the DqI-DTRS, we can get

The next proof process of this theorem is similar to that of 
Theorem 4.1.   □

For the same � and � , it can be seen form the above The-
orem 4.2 that if k1 and k2 satisfy 0 ≤ k1 < k2 ≤ |U| , then 
Theorem 4.2 provides a judgement method for comparing 
the fuzziness of the four disjoint region in DqI-DTRS model.

Example 4.1 (See Table 1) The medical example shown in 
references [23, 74] is introduced to interpret the fuzziness 
of the disjoint regions in DqI-DTRS. Let S = (U,A,D) be a 
decision table, where U is composed of 36 patients, and the 
condition attribute and decision attribute are fever, headache 
and cold, respectively. Let R denote the equivalence relation 
on the condition attributes.

From Table 1, the cold patient set X = {x
3

, x
5

, x
6

, x
9

, x
10

, x
11

,

x
14

, x
15

, x
18

, x
20

, x
21

, x
24

, x
26

, x
28

, x
29

, x
33

, x
34

} . We first calcu-
late the grade k = 1 upper and lower approximations of X 
as follows

PI
(𝛼,𝛽,k1)

(X) ⊆ PI
(𝛼,𝛽,k2)

(X);

NI
(𝛼,𝛽,k1)

(X) ⊇ NI
(𝛼,𝛽,k2)

(X);

UI
(𝛼,𝛽,k1)

(X) ⊇ UI
(𝛼,𝛽,k2)

(X);

LI
(𝛼,𝛽,k1)

(X) ⊆ LI
(𝛼,𝛽,k2)

(X).

Rk(X) = [x2]R ∪ [x4]R ∪ [x6]R ∪ [x8]R ∪ [x12]R,

R
k
(X) = [x5]R ∪ [x6]R ∪ [x15]R.

The upper and lower approximations based on parameters 
� = 0.5, � = 0.3 with respect to R are computed as

the upper and lower approximations of DqI-DTRS model are

We can obtain positive region, negative region, upper bound-
ary region and lower boundary region of DqI-DTRS:

Then the fuzziness of each region in DqI-DTRS could be 
calculated in the following

Based on the DqI-DTRS model, patients x5, x6, x9, x15, x26 
and x32 belong to the positive region with fuzziness 0.1083; 
patients x1, x7, x13, x19, x22, x30 and x35 belong to the nega-
tive region with fuzziness 0; patients x2, x3, x4, x8, x10, x11, 
x12, x14, x16, x17, x18, x20, x21, x23, x24, x25, x27, x28, x29, x31, 
x33, x34 and x36 belongs to the upper boundary region with 
fuzziness 0.6380.

Definition 4.2 The method for measuring fuzziness of DqII-
DTRS is in the following:

where

R(0.5,0.3)(X) = [x2]R ∪ [x3]R ∪ [x4]R ∪ [x5]R

∪ [x6]R ∪ [x8]R ∪ [x12]R ∪ [x15]R,

R
(0.5,0.3)

(X) = [x4]R ∪ [x5]R ∪ [x6]R ∪ [x8]R.

R(0.5,0.3)(X) = [x2]R ∪ [x3]R ∪ [x4]R ∪ [x5]R

∪ [x6]R ∪ [x8]R ∪ [x12]R ∪ [x15]R,

R
k
(X) = [x5]R ∪ [x6]R ∪ [x15]R.

PI(X) = [x5]R ∪ [x6]R ∪ [x15]R;

NI(X) = [x1]R;

UI(X) = [x2]R ∪ [x3]R ∪ [x4]R ∪ [x8]R ∪ [x12]R;

LI(X) = �.

HR(PI
(�,�,k)

(X)) = −
6

36 × ln 2

[
5

6
ln

5

6
+

1

6
ln

1

6

]
= 0.1083,

HR(NI
(�,�,k)

(X)) = 0,

HR(UI
(�,�,k)

(X)) = −
23

36 × ln 2

[
12

23
ln

12

23
+

11

23
ln

11

23

]
= 0.6380,

HR(LI
(�,�,k)

(X)) =0.

H
II,R

(�,�,k)
(X) =HR(PII

(�,�,k)
(X)) + HR(NII

(�,�,k)
(X))

+ HR(UII
(�,�,k)

(X)) + HR(LII
(�,�,k)

(X)),
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In Pawlak rough set model, when the granules (equivalence 
classes) are subdivided into finer granules by adding new 

HR(PII
(�,�,k)

(X)) = −
|PII

(�,�,k)
(X)|

|U| × ln 2

[
|PII

(�,�,k)
(X) ∩ X|

|PII
(�,�,k)

(X)|

ln
|PII

(�,�,k)
(X) ∩ X|

|PII
(�,�,k)

(X)|
+

(
1 −

|PII
(�,�,k)

(X) ∩ X|

|PII
(�,�,k)

(X)|

)

ln

(
1 −

|PII
(�,�,k)

(X) ∩ X|

|PII
(�,�,k)

(X)|

)]
,

HR(NII
(�,�,k)

(X)) = −
|NII

(�,�,k)
(X)|

|U| × ln 2

[
|NII

(�,�,k)
(X) ∩ X|

|NII
(�,�,k)

(X)|

ln
|NII

(�,�,k)
(X) ∩ X|

|NII
(�,�,k)

(X)|
+

(
1 −

|NII
(�,�,k)

(X) ∩ X|

|NII
(�,�,k)

(X)|

)

ln

(
1 −

|NII
(�,�,k)

(X) ∩ X|

|NII
(�,�,k)

(X)|

)]
,

HR(UII
(�,�,k)

(X)) = −
|UII

(�,�,k)
(X)|

|U| × ln 2

[
|UII

(�,�,k)
(X) ∩ X|

|UII
(�,�,k)

(X)|

ln
|UII

(�,�,k)
(X) ∩ X|

|UII
(�,�,k)

(X)|
+

(
1 −

|UII
(�,�,k)

(X) ∩ X|

|UII
(�,�,k)

(X)|

)

ln

(
1 −

|UII
(�,�,k)

(X) ∩ X|

|UII
(�,�,k)

(X)|

)]
,

HR(LII
(�,�,k)

(X)) = −
|LII

(�,�,k)
(X)|

|U| × ln 2

[
|LII

(�,�,k)
(X) ∩ X|

|LII
(�,�,k)

(X)|

ln
|LII

(�,�,k)
(X) ∩ X|

|LII
(�,�,k)

(X)|
+

(
1 −

|LII
(�,�,k)

(X) ∩ X|

|LII
(�,�,k)

(X)|

)

ln

(
1 −

|LII
(�,�,k)

(X) ∩ X|

|LII
(�,�,k)

(X)|

)]
.

attributes or information, the fuzziness of a target concept X 
will gradually decrease according to formula H(FX

R
) . In other 

words, the finer the granules in knowledge space, the lower the 
uncertainty of the target concept, and the boundary region will 
become smaller and narrower when the granules in Pawlak’s 
knowledge space gradually subdivided. However, for the Dq-
DTRS model, we cannot get the similar conclusions when the 
equivalence classes in knowledge space S = (U,A) are subdi-
vided into finer granules. Because the upper approximation and 
lower approximation in both DqI-DTRS and DqII-DTRS mod-
els do not contain inclusion relation, while the Pawlak rough 
set holds, so the upper boundary region and lower boundary 
region are existing in both DqI-DTRS and DqII-DTRS models.

Theorem 4.3 Given an information system S = (U,A) and 
an equivalence relation R. For any target set X ⊆ U, for the 
same k, if 0 ≤ 𝛽1 ≤ 𝛽2 < 𝛼2 ≤ 𝛼1 ≤ 1, then

• HR(PII
(�1,�1,k)

(X)) ≤ HR(PII
(�2,�2,k)

(X));

• HR(NII
(�1,�1,k)

(X)) ≥ HR(NII
(�2,�2,k)

(X));

• HR(UII
(�1,�1,k)

(X)) ≤ HR(UII
(�2,�2,k)

(X));

• HR(LII
(�1,�1,k)

(X)) ≥ HR(LII
(�2,�2,k)

(X)).

Proof When 0 ≤ 𝛽1 ≤ 𝛽2 < 𝛼2 ≤ 𝛼1 ≤ 1 , it can be seen that 
R
(�1,�1)

(X) ≤ R
(�2,�2)

(X) and R(�1,�1)
(X) ≥ R(�2,�2)

(X) . Accord-

ing to the definition of the four regions in DqII-DTRS 
model,

Because R
(�1,�1)

(X) ≤ R
(�2,�2)

(X) , we obtain

PII
(�,�,k)

(X) = Rk(X) ∩ R
(�,�)

(X);

NII
(�,�,k)

(X) =∼ (Rk(X) ∪ R
(�,�)

(X));

UII
(�,�,k)

(X) = Rk(X) − R
(�,�)

(X);

LII
(�,�,k)

(X) = R
(�,�)

(X) − Rk(X).

Table 1  Initial medical data Patient Fever Headache Cold Patient Fever Headache Cold Patient Fever Headache Cold

x
1

0 0 0 x
13

0 0 0 x
25

0 2 0
x
2

1 1 0 x
14

2 1 1 x
26

2 2 1
x
3

0 2 1 x
15

0 1 1 x
27

1 1 0
x
4

2 1 0 x
16

1 1 0 x
28

2 0 1
x
5

1 0 1 x
17

0 2 0 x
29

2 1 1
x
6

2 2 1 x
18

2 1 1 x
30

0 0 0
x
7

0 0 0 x
19

0 0 0 x
31

1 2 0
x
8

1 2 0 x
20

1 2 1 x
32

0 1 0
x
9

2 2 1 x
21

2 0 1 x
33

2 1 1
x
10

1 1 1 x
22

0 0 0 x
34

1 1 1
x
11

1 2 1 x
23

2 1 0 x
35

0 0 0
x
12

2 0 0 x
24

1 2 1 x
36

2 0 0
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The next proof process of this theorem is similar to that of 
Theorem 4.1.   □

For the same grade k, it can be seen form the above Theo-
rem 4.3 that if the two pairs of (�1, �1) and (�2, �2) satisfy 
0 ≤ 𝛽1 ≤ 𝛽2 < 𝛼2 ≤ 𝛼1 ≤ 1 , then Theorem 4.3 provides a 
judgement method for comparing the fuzziness of the four 
disjoint region in DqII-DTRS model.

Theorem 4.4 Given an information system S = (U,A) and 
an equivalence relation R. For any target set X ⊆ U, for 
the same �, �, if 0 ≤ k1 < k2 ≤ |U|, then for the DqII-DTRS 
model, we can establish the following formulas:

• HR(PII
(�,�,k1)

(X)) ≥ HR(PII
(�,�,k2)

(X));

• HR(NII
(�,�,k1)

(X)) ≤ HR(NII
(�,�,k2)

(X));

• HR(UII
(�,�,k1)

(X)) ≥ HR(UII
(�,�,k2)

(X));

• HR(LII
(�,�,k1)

(X)) ≤ HR(LII
(�,�,k2)

(X)).

Proof When k1 < k2 , then R
k1
(X) ≤ R

k2
(X) and R

k
1

(X) ≥

R
k
2

(X) . Then for the DqII-DTRS, we have

The next proof process of this theorem is similar to that of 
Theorem 4.1.   □

For the same � and � , it can be seen form the above Theo-
rem 4.4 that if k1 and k2 satisfy 0 ≤ k1 < k2 ≤ |U| , then Theo-
rem 4.4 provides a judgement method for comparing the 
fuzziness of the four disjoint region in DqII-DTRS model.

Example 4.2 (Continuation of Example 4.1) The upper and 
lower approximations of DqII-DTRS model are

We can also get positive region, negative region, upper 
boundary region and lower boundary region of DqII-DTRS:

PII
(𝛼1,𝛽1,k)

(X) ⊆ PII
(𝛼2,𝛽2,k)

(X);

NII
(𝛼1,𝛽1,k)

(X) ⊇ NII
(𝛼2,𝛽2,k)

(X);

UII
(𝛼1,𝛽1,k)

(X) ⊆ UII
(𝛼2,𝛽2,k)

(X);

LII
(𝛼1,𝛽1,k)

(X) ⊇ LII
(𝛼2,𝛽2,k)

(X).

PII
(𝛼,𝛽,k1)

(X) ⊇ PII
(𝛼,𝛽,k2)

(X);

NII
(𝛼,𝛽,k1)

(X) ⊆ NII
(𝛼,𝛽,k2)

(X);

UII
(𝛼,𝛽,k1)

(X) ⊇ UII
(𝛼,𝛽,k2)

(X);

LII
(𝛼,𝛽,k1)

(X) ⊆ LII
(𝛼,𝛽,k2)

(X).

Rk(X) = [x2]R ∪ [x4]R ∪ [x6]R ∪ [x8]R ∪ [x12]R,

R
(0.5,0.3)

(X) = [x4]R ∪ [x5]R ∪ [x6]R ∪ [x8]R.

And the fuzziness of each region in DqII-DTRS could be 
calculated as

Based on the DqII-DTRS model, patients x4, x6, x8, x9, 
x11, x14, x18, x20, x23, x24, x26, x29, x31 and x33 belong to the 
positive region with the fuzziness 0.2915; patients x1, x3, 
x7, x13, x15, x17, x19, x22, x25, x30, x32 and x35 belong to the 
negative region with fuzziness 0.2167; patients x2, x10, x12, 
x16, x21, x27, x28, x34 and x36 belongs to the upper boundary 
region with fuzziness 0.2478; patient x5 belongs to the lower 
boundary region with the fuzziness 0.

5  Regions changing with attribute 
increment for Dq‑DTRS model

In order to measure fuzziness of a rough set, the authors in 
[28] presented a method for measuring uncertainty of a tar-
get concept in rough approximation space according to infor-
mation entropy. That method takes into account two kinds 
of uncertainty, one is coming from the objects which belong 
to the target concept X but they are classified into boundary, 
the other uncertainty is coming from the objects which do 
not belong to X but they are classified into boundary region. 
For an uncertain target concept, the uncertainty comes 
from four regions, namely, positive region, negative region, 
upper boundary region and lower boundary region with two 
parameters �, � , and a grade k (where 0 ≤ 𝛽 < 𝛼 ≤ 1 and 
0 ≤ k ≤ |U| ) in Dq-DTRS models. In this section, we inves-
tigate the changes of boundary region in Dq-DTRS models 
and study the judgement theorems for three kinds of incre-
mental information.

5.1  Incremental information in Dq‑DTRS model

In this subsection, we study the effects of adding attributes 
on the variation of disjoint regions in Pawlak rough set, 
DTRS and Dq-DTRS models and make the comparative 

PII(X) = [x4]R ∪ [x6]R ∪ [x8]R;

NII(X) = [x1]R ∪ [x3]R ∪ [x15]R;

UII(X) = [x2]R ∪ [x12]R;

LII(X) = [x5]R.

HR(PII
(�,�,k)

(X)) = −
14

36 × ln 2

[
11

14
ln

11

14
+

3

14
ln

3

14

]
= 0.2915,

HR(NII
(�,�,k)

(X)) = −
12

36 × ln 2

[
2

12
ln

2

12
+

10

12
ln

10

12

]
= 0.2167,

HR(UII
(�,�,k)

(X)) = −
9

36 × ln 2

[
4

9
ln

4

9
+

5

9
ln

5

9

]
= 0.2478,

HR(LII
(�,�,k)

(X)) = 0.
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analysis on these three models. Let us see the following 
definition of attribute increment.

Definition 5.1 [69] Given an information system S = (U,A) , 
R1 ⊆ R2 ⊆ A . The difference ΔR = R2 − R1 is called attribute 
increment.

If we want to make the final two-way decisions in Pawlak 
rough set model, we usually need to add some new attributes 
to reclassify the objects in boundary region into positive 
region (to make acceptance decisions) or negative region 
(to make rejection decisions). Then the boundary region 
will become smaller, and both positive region and negative 
region will become bigger. In the DTRS model, we cannot 
obtain the monotonicity of probabilistic positive regions of a 
target (or decision). Compare with Pawlak rough set model, 
the changes of three regions in DTRS are more complicated 
with the increase of attributes (See Figure 2).

In  Figure   2 ,  we  use  (i, j) (i ∈ {1, 2, 3, 4, 5, 6};

j ∈ {1, 2, 3, 4, 5, 6, 7}) to denote as the blocks of equiva-
lence class in the upper part two small graphs, and use 
(m, n) (m ∈ {1, 2,… , 12}; n ∈ {1, 2,… , 14}) to denote as 
the blocks of equivalence class in the lower part two small 
graphs. It is easy to see that the positive region and negative 

region are much bigger and the boundary region becomes 
smaller in Pawlak rough set with the attribute increment, 
because some equivalence classes are redivided into positive 
region (Newly added blocks (4, 6),  (4, 7),  (4, 8),  (4, 9),  
(5, 11),  (6, 11),  (9, 8),  (9, 9),  (9, 10)) and negative region 
(Newly added (3, 3),  (3, 4),  (3, 11),  (3, 12),  (4, 12),  (5, 3),  
(6, 3),   (7, 3),   (8, 3),   (8, 12),  (9, 3),   (9, 12),  (10, 3),  
(10, 4),  (10, 5),  (10, 6),  (10, 12)) from its original bound-
ary region. For the DTRS, elements in positive region and 
negative region are no longer only added from the boundary 
region, which is different from Pawlak rough set. For the 
new positive region in Figure 2 (DTRS part), the block (4, 4) 
is added from negative region, and blocks (4, 5),  (4, 6),  
(5, 4),  (7, 11),  (8, 11),  (9, 6) are increased from boundary 
region; there are 7 blocks moved out from original positive 
region, which are (3, 7),  (3, 8),  (3, 9),  (3, 10),  (5, 12),  
(6, 12),  (10, 7). For the new negative region (DTRS part 
again), blocks (3, 5),  (3, 6),  (3, 7),  (3, 8),  (3, 9),  (3, 10),  
(5, 12),  (6, 12) are added from original positive region, and 
blocks (5, 3),  (6, 3),  (7, 3),  (7, 12),  (8, 3),  (8, 12),  (9, 12),  
(10, 5),  (10, 6),  (10, 7) are increased from original bound-
ary region; there are 3 blocks moved out from original nega-
tive region, which are (4, 4),  (4, 11),  (9, 11). That is to say, 
in DTRS model, blocks in positive region may be removed 

Fig. 2  Regions changing with 
attribute increment in Pawlak 
rough set and DTRS
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into negative region and boundary region with attribute 
increment; blocks in negative region may be removed into 
positive region and boundary region with attribute incre-
ment; and blocks in boundary region may be removed into 
positive region and boundary region.

As to the situations in Dq-DTRS models (See Figure 3), 
it is much more complicated than the results in DTRS. We 
also use (i, j) (i ∈ {1, 2, 3, 4, 5, 6}; j ∈ {1, 2, 3, 4, 5, 6, 7}) to 
denote as the blocks of equivalence class in the graphs with-
out attribute increment, and use (m, n) (m ∈ {1, 2,… , 12};

n ∈ {1, 2,… , 14}) to denote as the blocks of equivalence 
class in the graphs of two kinds of Dq-DTRS model with 
attribute increment. Unlike DTRS, the positive and negative 
regions are not longer just increasing, but there are some 
blocks moved out from the original positive region and nega-
tive region. Let us analyze the regions changing in the fol-
lowing, we call the Dq-DTRS without attribute increment as 
original Dq-DTRS and Dq-DTRS with attribute increment 
as new Dq-DTRS, the same to their corresponding disjoints.

For the new positive region of DqI-DTRS (with attribute 
increment), the block (4, 4) is added from original lower 

boundary region, blocks (4, 11) and (9, 7) are increased from 
original negative region, and blocks (5, 4),  (7, 11),  (8, 4),  
(8, 11), (9, 5),  (9, 6),  (9, 7) are increase from original upper 
boundary region. For the new negative region (DqI-DTRS 
again), blocks (3, 5), (3, 6),  (3, 7),  (3, 8),  (3, 9),  (3, 10),  
(5, 12),  (6, 12),  (10, 7) are added from original positive 
region, blocks (3, 3),  (3, 4),  (4, 3) are increased from origi-
nal lower boundary region, and blocks (5, 3),  (6, 3),  (7, 3),  
(7, 12), (8, 3),  (8, 12),  (10, 5) are increased from upper 
boundary region. The decreasing of blocks of new positive 
region are (3, 5),  (3, 6),  (3, 7),  (3, 8),  (3, 9),  (3, 10),  
(10, 7), where blocks (3, 5),  (3, 6),  (3, 7),  (3, 8),  (3, 9),  
(3, 10),  (10, 7) are redivided into new negative region of 
DqI-DTRS, the decreasing of blocks of new negative region 
are (4, 11),  (9, 11),  (10, 11),  where (3, 5),  (3, 6),  are redi-
vided into new positive region, and (3, 7) is redivided into 
new lower boundary region in DqI-DTRS.

For the new positive region of DqII-DTRS (with attribute 
increment), the blocks (9, 7),  (9, 8) and (10, 8) are added 
from original lower boundary region, blocks (4, 4),  (4, 5),  
(4, 6),  and (9, 6) are increased from original negative region, 

Fig. 3  Regions changing with 
attribute increment in Dq-DTRS
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and blocks (5, 4),  (7, 11) are increased from original upper 
boundary region. For the new negative region (DqII-DTRS 
again), block (10, 7) is increased from original lower bound-
ary region, blocks (3, 7),  (3, 8),  (3, 9),  (3, 10),  (5, 12),  
(6, 12) are added from original positive region, and blocks 
(5, 3),  (6, 3),  (6, 4),  (7, 3),  (7, 12), (8, 3),  (8, 12),  (9, 11),  
(9, 12),  (10, 11),  (10, 12) are increased from upper bound-
ary region. The decreasing of blocks of new positive region 
are (3, 7),  (3, 8),  (3, 9),  (3, 10),  (5, 12),  (6, 12), where 
these blocks are redivided into new negative region in DqII-
DTRS, the decreasing of blocks of new negative region are 
(4, 4),  (4, 5),  (4, 6),  (4, 11),  (9, 5),  (9, 6), where (4, 4),  
(4, 5),  (4, 6),  (4, 11),  (9, 6) are redivided into new posi-
tive region, and (4, 11),  (9, 5) are redivided into new upper 
boundary region in DqII-DTRS. The special circumstance 
in this DqII-DTRS is that the block (8, 11) is from upper 
boundary region to lower boundary region.

For the three-way decisions in the real-life applications, 
the ultimate goal is to reach the two-way decisions. To reach 
this goal, we must narrow down the size of boundary region, 
including upper boundary region and lower boundary 
region. Because the boundary region of Dq-DTRS model is 
subdivided into two parts: upper boundary region and lower 
boundary region, so the changes of the regions must be much 
more complicated after adding the attributes. It is obvious 
that there are three cases of boundary region change in Dq-
DTRS model with attribute increment (boundary region 
becomes smaller, boundary region remains unchanged, and 
boundary region becomes larger).

Definition 5.2 Given an information system S = (U,A) with 
a pair of thresholds 𝛼, 𝛽 (0 ≤ 𝛽 < 𝛼 ≤ 1) and the grade k, 
R1 ⊆ R2 ⊆ A . In the Dq⧫-DTRS model (⧫ ∈ {I, II}),

(1) If B⧫R1

(�,�,k)
(X) ⫌ B

⧫R2

(�,�,k)
(X) i. e. 

(U
⧫R1

(�,�,k)
(X) ∪ L

⧫R1

(�,�,k)
(X)) ⫌ (U

⧫R2

(�,�,k)
(X) ∪ L

⧫R2

(�,�,k)
(X)) , 

then the attribute increment ΔR = R2 − R1 is called 
useful incremental information.

(2) If B⧫R1

(�,�,k)
(X) = B

⧫R2

(�,�,k)
(X) i. e. 

(U
⧫R1

(�,�,k)
(X) ∪ L

⧫R1

(�,�,k)
(X)) = (U

⧫R2

(�,�,k)
(X) ∪ L

⧫R2

(�,�,k)
(X)) , 

then the attribute increment ΔR = R2 − R1 is called 
useless incremental information.

(3) If B⧫R1

(�,�,k)
(X) ⫋ B

⧫R2

(�,�,k)
(X) i. e. 

(U
⧫R1

(�,�,k)
(X) ∪ L

⧫R1

(�,�,k)
(X)) ⫋ (U

⧫R2

(�,�,k)
(X) ∪ L

⧫R2

(�,�,k)
(X)) , 

then the attribute increment ΔR = R2 − R1 is called 
error-correction incremental information.

• For the useful incremental information, a part of the ele-
ments in the boundary region (upper and lower boundary 

region) can be classified into positive region or nega-
tive region. This result indicates the useful incremental 
information is helpful to classify the uncertain objects in 
boundary region.

• For the useless incremental information, the elements 
in the boundary region cannot be classified into positive 
region or negative region. This result indicates this use-
less incremental information is helpless to classify the 
uncertain objects in boundary region.

• For the error-correction incremental information, the ele-
ments in the positive region or negative region are reclas-
sified into boundary region. In other words, in this case, 
by adding some new attributes, a part of elements which 
are wrongly classified into the positive region or negative 
region due to insufficient information are reclassified into 
boundary region.

5.2  Assessment theorems for incremental 
information in Dq‑DTRS model

The boundary region consists of two parts: upper boundary 
region and lower boundary region in the two kinds of Dq-
DTRS models. In the following, we investigate the judge-
ment methods for three kinds of incremental information 
with attribute increment in DqI-DTRS model and DqII-
DTRS model, respectively.

Theorem 5.1 Given an information system S = (U,A) with 
a pair of thresholds 𝛼, 𝛽 (0 ≤ 𝛽 < 𝛼 ≤ 1) and the grade k, 
R1 ⊆ R2 ⊆ A. For any target concept X ⊆ U, if the attribute 
increment ΔR = R2 − R1 only can distinguish the elements in 
the boundary region in DqI-DTRS model, then the attribute 
increment ΔR is the useful incremental information or use-
less incremental information.

Proof Let U∕IND(R1) = {[x]R1
| x ∈ U} = {X1,X2,… ,Xl} 

and BI,R
1

(�,�,k)
(X) = U

I,R
1

(�,�,k)
(X) ∪ L

I,R
1

(�,�,k)
(X) = ∪{X

i
1

, Xi2
,… ,Xip

} , 

where X
i
1

∈ U∕IND(R
1

),X
i
2

∈ U∕IND(R
1

),… ,X
ip
∈ U∕IND(R

1

) . 

For more simplicity, supposing only one equivalence class 
is subdivided into two finer equivalence classes, without loss 
of generality, let Xi1

= X
�

i1
∪ X

��

i1
 . Based on the definition of 

DqI-DTRS model, we have ( |Xi1∩X|
|Xi

1

|
> 𝛽) ∧ (|X

i
1

| − |X
i
1

∩ X| > k) 

or (
|Xi1

∩X|
|Xi1

| ≤ �) ∧ (|Xi1
| − |Xi1

∩ X| ≤ k). There are about 16 

cases regard to X′

i1
 and X′′

i1
 (See Table 2).

As BI,R2

(�,�,k)
(X) = U

I,R2

(�,�,k)
(X) ∪ L

I,R2

(�,�,k)
(X) , and all equiva-

lence classes except Xi1
(Xi1

⊆ B
I,R1

(𝛼,𝛽,k)
(X)) keep unchanged, 

so we can get the following:
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(1) B
I,R

1

(�,�,k)
(X) = B

I,R
2

(�,�,k)
(X); (2) B

I,R
2

(�,�,k)
(X) = B

I,R
1

(�,�,k)
(X)−

X
��

i
1

⊆ B
I,R

1

(𝛼,𝛽,k)
(X);

(3) B
I,R

2

(𝛼,𝛽,k)
(X) = B

I,R
1

(𝛼,𝛽,k)
(X) − X

��

i
1

⊆ B
I,R

1

(𝛼,𝛽,k)
(X); (4) B

I,R
1

(𝛼,𝛽,k)

(X) = B
I,R

2

(�,�,k)
(X); (5) The same to the case in (2);

(6) B
I,R

2

(𝛼,𝛽,k)
(X) = B

I,R
1

(𝛼,𝛽,k)
(X) − X

�

i
1

− X
��

i
1

⊆ B
I,R

1

(𝛼,𝛽,k)
(X);

(7) B
I,R

2

(𝛼,𝛽,k)
(X) = B

I,R
1

(𝛼,𝛽,k)
(X) − X

�

i
1

− X
��

i
1

⊆ B
I,R

1

(𝛼,𝛽,k)
(X);

(8) B
I,R2

(𝛼,𝛽,k)
(X) = B

I,R1

(𝛼,𝛽,k)
(X) − X

�

i1
⊆ B

I,R1

(𝛼,𝛽,k)
(X); (9) The 

same to the case in (3); (10) The same to (7);

(11) B
I,R

2

(𝛼,𝛽,k)
(X) = B

I,R
1

(𝛼,𝛽,k)
(X) − X

�

i
1

− X
��

i
1

⊆ B
I,R

1

(𝛼,𝛽,k)
(X);

(12) B
I,R

2

(𝛼,𝛽,k)
(X) = B

I,R
1

(𝛼,𝛽,k)
(X) − X

�

i
1

⊆ B
I,R

1

(𝛼,𝛽,k)
(X);

(13) The same to the case in (4); (14) The same to (8); 
(15) The same to (12); (16) BI,R1

(�,�,k)
(X) = B

I,R2

(�,�,k)
(X).

We can obtain that BI,R2

(𝛼,𝛽,k)
(X) ⊆ B

I,R1

(𝛼,𝛽,k)
(X) , which means 

B
I,R2

(�,�,k)
(X) ⫋ B

I,R1

(�,�,k)
(X) or BI,R2

(�,�,k)
(X) = B

I,R1

(�,�,k)
(X) . According 

to the Definition 5.2, ΔR is a useful incremental information 
or useless incremental information.   □

In Theorem 5.1, take the elements in upper boundary 
region for example, if the attribute increment ΔR only dis-
tinguish the elements in the upper boundary region, there 
are three possible directions for the reclassified elements: 
(1) lower boundary region; (2) positive region; and (3) nega-
tive region. So the boundary region becomes unchanged or 
smaller. Which means ΔR is the useless incremental infor-
mation or useful incremental information in DqI-DTRS.

Theorem 5.2 Given an information system S = (U,A) with 
a pair of thresholds 𝛼, 𝛽 (0 ≤ 𝛽 < 𝛼 ≤ 1) and the grade k, 
R1 ⊆ R2 ⊆ A. For any target concept X ⊆ U, if the attribute 
increment ΔR = R2 − R1 only can distinguish the elements 
in the positive region in DqI-DTRS model, then the attribute 
increment ΔR is the error-correction incremental informa-
tion or useless incremental information.

Proof Let U∕IND(R1) = {[x]R1
| x ∈ U} = {X1,X2,… ,Xl} 

and PI,R1

(�,�,k)
(X) = ∪{Xi1

,Xi2
,… ,Xiq

} , where X
i
1

∈ U∕IND

Xi1
∈ U∕IND(R1),Xi2

∈ U∕IND(R1),… ,Xiq
∈ U∕IND(R1) . 

Supposing only one equivalence class is subdivided into two 
finer equivalence classes, without loss of generality, let 
Xi1

= X
�

i1
∪ X

��

i1
 . Based on the definition of DqI-DTRS model, 

we can obtain (
|Xi1

∩X|
|Xi1

| > 𝛽) ∧ (|Xi1
| − |Xi1

∩ X| ≤ k). There 

are about 16 cases regard to X′

i1
 and X′′

i1
 (See Table 2).

As BI,R2

(�,�,k)
(X) = U

I,R2

(�,�,k)
(X) ∪ L

I,R2

(�,�,k)
(X) , and all equiva-

lence classes except Xi1
(Xi1

⊆ P
I,R1

(𝛼,𝛽,k)
(X)) keep unchanged, 

so we can get the following:
(1) B

I,R
1

(𝛼,𝛽,k)
(X) ⊆ B

I,R
1

(𝛼,𝛽,k)
(X) ∪ X

�

i
1

∪ X
��

i
1

= B
I,R

2

(𝛼,𝛽,k)
(X);

(2) B
I,R

1

(𝛼,𝛽,k)
(X) ⊆ B

I,R
1

(𝛼,𝛽,k)
(X) ∪ X

�

i
1

= B
I,R

2

(𝛼,𝛽,k)
(X);

(3) B
I,R

1

(𝛼,𝛽,k)
(X) ⊆ B

I,R
1

(𝛼,𝛽,k)
(X) ∪ X

�

i
1

= B
I,R

2

(𝛼,𝛽,k)
(X);

(4) B
I,R

1

(𝛼,𝛽,k)
(X) ⊆ B

I,R
1

(𝛼,𝛽,k)
(X) ∪ X

�

i
1

∪ X
��

i
1

= B
I,R

2

(𝛼,𝛽,k)
(X);

(5) The same to the case in (2); (6) BI,R
2

(�,�,k)
(X) = B

I,R
1

(�,�,k)
(X);

(7) B
I,R

2

(�,�,k)
(X) = B

I,R
1

(�,�,k)
(X);

Table 2  Cases regard to X′

i
1

 and X′′

i
1

 with incremental information

X
′

i
1

X
′′

i
1

|X�

i
1

∩ X|∕|X�

i
1

| |X�

i
1

| − |X�

i
1

∩ X| |X��

i
1

∩ X|∕|X��

i
1

| |X��

i
1

| − |X��

i
1

∩ X|

(1) > 𝛽 > k > 𝛽 > k

⊆ U
I,R

2

(𝛼,𝛽,k)
(X) ⊆ U

I,R
2

(𝛼,𝛽,k)
(X)

(2) > 𝛽 > k > 𝛽 ≤ k

⊆ U
I,R

2

(𝛼,𝛽,k)
(X) ⊆ P

I,R
2

(𝛼,𝛽,k)
(X)

(3) > 𝛽 > k ≤ � > k

⊆ U
I,R

2

(𝛼,𝛽,k)
(X) ⊆ N

I,R
2

(𝛼,𝛽,k)
(X)

(4) > 𝛽 > k ≤ � ≤ k

⊆ U
I,R

2

(𝛼,𝛽,k)
(X) ⊆ L

I,R
2

(𝛼,𝛽,k)
(X)

(5) > 𝛽 ≤ k > 𝛽 > k

⊆ P
I,R

2

(𝛼,𝛽,k)
(X) ⊆ U

I,R
2

(𝛼,𝛽,k)
(X)

(6) > 𝛽 ≤ k > 𝛽 ≤ k

⊆ P
I,R

2

(𝛼,𝛽,k)
(X) ⊆ P

I,R
2

(𝛼,𝛽,k)
(X)

(7) > 𝛽 ≤ k ≤ � > k

⊆ P
I,R

2

(𝛼,𝛽,k)
(X) ⊆ N

I,R
2

(𝛼,𝛽,k)
(X)

(8) > 𝛽 ≤ k ≤ � ≤ k

⊆ P
I,R

2

(𝛼,𝛽,k)
(X) ⊆ L

I,R
2

(𝛼,𝛽,k)
(X)

(9) ≤ � > k > 𝛽 > k

⊆ N
I,R

2

(𝛼,𝛽,k)
(X) ⊆ U

I,R
2

(𝛼,𝛽,k)
(X)

(10) ≤ � > k > 𝛽 ≤ k

⊆ N
I,R

2

(𝛼,𝛽,k)
(X) ⊆ P

I,R
2

(𝛼,𝛽,k)
(X)

(11) ≤ � > k ≤ � > k

⊆ N
I,R

2

(𝛼,𝛽,k)
(X) ⊆ N

I,R
2

(𝛼,𝛽,k)
(X)

(12) ≤ � > k ≤ � ≤ k

⊆ P
I,R

2

(𝛼,𝛽,k)
(X) ⊆ L

I,R
2

(𝛼,𝛽,k)
(X)

(13) ≤ � ≤ k > 𝛽 > k

⊆ L
I,R

2

(𝛼,𝛽,k)
(X) ⊆ U

I,R
2

(𝛼,𝛽,k)
(X)

(14) ≤ � ≤ k > 𝛽 ≤ k

⊆ L
I,R

2

(𝛼,𝛽,k)
(X) ⊆ P

I,R
2

(𝛼,𝛽,k)
(X)

(15) ≤ � ≤ k ≤ � > k

⊆ L
I,R

2

(𝛼,𝛽,k)
(X) ⊆ P

I,R
2

(𝛼,𝛽,k)
(X)

(16) ≤ � ≤ k ≤ � ≤ k

⊆ L
I,R

2

(𝛼,𝛽,k)
(X) ⊆ L

I,R
2

(𝛼,𝛽,k)
(X)
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(8) B
I,R1

(𝛼,𝛽,k)
(X) ⊆ B

I,R1

(𝛼,𝛽,k)
(X) ∪ X

��

i1
= B

I,R2

(𝛼,𝛽,k)
(X); (9) The 

same to the case in (3); (10) The same to (7);
(11) B

I,R
2

(𝛼,𝛽,k)
(X) = B

I,R
1

(𝛼,𝛽,k)
(X); (12) B

I,R
1

(𝛼,𝛽,k)
(X) ⊆ B

I,R
1

(𝛼,𝛽,k)
(X)

∪X
��

i
1

= B
I,R

2

(�,�,k)
(X); (13) The same to (4);

(14) The same to (8); (15) The same to (12); 
(16) B

I,R1

(𝛼,𝛽,k)
(X) ⊆ B

I,R1

(𝛼,𝛽,k)
(X) ∪ X

�

i1
∪ X

��

i1
= B

I,R2

(𝛼,𝛽,k)
(X).

From the above 16 cases, we can obtain that 
B
I,R1

(𝛼,𝛽,k)
(X) ⊆ B

I,R2

(𝛼,𝛽,k)
(X) , which means BI,R1

(�,�,k)
(X) ⫋ B

I,R2

(�,�,k)
(X) 

or BI,R1

(�,�,k)
(X) = B

I,R2

(�,�,k)
(X) . According to the Definition 5.2, 

ΔR is an error-correction incremental information or useless 
incremental information.   □

In Theorem 5.2, if the attribute increment ΔR only distin-
guish the elements in the positive region in DqI-DTRS, there 
are three possible directions for the reclassified elements: (1) 
upper boundary region; (2) lower boundary region; and (3) 
negative region. So the boundary region becomes larger or 
unchanged. Which means ΔR is the error-correction incre-
mental information or useless incremental information in 
DqI-DTRS.

Theorem 5.3 Given an information system S = (U,A) with 
a pair of thresholds 𝛼, 𝛽 (0 ≤ 𝛽 < 𝛼 ≤ 1) and the grade k, 
R1 ⊆ R2 ⊆ A. For any target concept X ⊆ U, if the attribute 
increment ΔR = R2 − R1 only can distinguish the elements 
in the negative region in DqI-DTRS model, then the attribute 
increment ΔR is the error-correction incremental informa-
tion or useless incremental information.

Proof Let U∕IND(R1) = {[x]R1
| x ∈ U} = {X1,X2,… ,Xl} 

and PI,R1

(�,�,k)
(X) = ∪{Xi1

,Xi2
,… ,Xir

} , where X
i
1

∈ U∕IND

(R
1

),X
i
2

∈ U∕IND(R
1

),… ,X
i
r

∈ U∕IND(R
1

) . Supposing 
only one equivalence class is subdivided into two finer 
equivalence classes, without loss of generality, let 
Xi1

= X
�

i1
∪ X

��

i1
 . Based on the definition of DqI-DTRS model, 

we can get (
|Xi1

∩X|
|Xi1

| ≤ 𝛽) ∧ (|Xi1
| − |Xi1

∩ X| > k). There are 

about 16 cases regard to X′

i1
 and X′′

i1
 (See Table 2).

As BI,R2

(�,�,k)
(X) = U

I,R2

(�,�,k)
(X) ∪ L

I,R2

(�,�,k)
(X) , and all equiva-

lence classes except Xi1
(Xi1

⊆ N
I,R1

(𝛼,𝛽,k)
(X)) keep unchanged, 

so we can get the same results as the 16 situations in Theo-
rem 5.2. We can obtain that BI,R1

(𝛼,𝛽,k)
(X) ⊆ B

I,R2

(𝛼,𝛽,k)
(X) , which 

means BI,R1

(�,�,k)
(X) ⫋ B

I,R2

(�,�,k)
(X) or BI,R1

(�,�,k)
(X) = B

I,R2

(�,�,k)
(X) . 

According to the Definition 5.2, ΔR is an error-correction 
incremental information or useless incremental informa-
tion.   □

In Theorem 5.3, if the attribute increment ΔR only dis-
tinguish the elements in the negative region in DqI-DTRS, 
there are three possible directions for the reclassified ele-
ments: (1) upper boundary region; (2) lower boundary 
region; and (3) positive region. So the boundary region 
becomes larger or unchanged. Which means ΔR is the error-
correction incremental information or useless incremental 
information in DqI-DTRS.

Theorem 5.4 Given an information system S = (U,A) with 
a pair of thresholds 𝛼, 𝛽 (0 ≤ 𝛽 < 𝛼 ≤ 1) and the grade k, 
R1 ⊆ R2 ⊆ A. For any target concept X ⊆ U, if the attribute 
increment ΔR = R2 − R1 only can distinguish the elements 
in the boundary region in DqII-DTRS model, then attribute 
increment ΔR is the useful incremental information or use-
less incremental information.

Proof Let U∕IND(R1) = {[x]R1
| x ∈ U} = {X1,X2,… ,Xl} 

and BII,R
1

(�,�,k)
(X) = U

II,R
1

(�,�,k)
(X) ∪ L

II,R
1

(�,�,k)
(X) = ∪{X

i
1

, Xi2
,… ,Xip

} , 

where X
i
1

∈ U∕IND(R
1

),X
i
2

∈ U∕IND(R
1

),… ,X
i
p

∈ U∕

IND(R
1

) . Supposing only one equivalence class is subdi-
vided into two finer equivalence classes, without loss of 
generality, let Xi1

= X
�

i1
∪ X

��

i1
 . Based on the definition of 

DqII-DTRS model, we can get (
|Xi1

∩X|
|Xi1

| < 𝛼) ∧ (|Xi1
∩ X| > k) 

or (
|Xi1

∩X|
|Xi1

| ≥ �) ∧ (|Xi1
∩ X| ≤ k). There are about 16 cases 

regard to X′

i1
 and X′′

i1
 (See Table 3):

As BII,R2

(�,�,k)
(X) = U

II,R2

(�,�,k)
(X) ∪ L

II,R2

(�,�,k)
(X) , and all equiva-

lence classes except Xi1
(Xi1

⊆ B
I,R1

(𝛼,𝛽,k)
(X)) keep unchanged, 

so we can get the following:
(1) B

II,R
2

(𝛼,𝛽,k)
(X) = B

II,R
1

(𝛼,𝛽,k)
(X) − X

�

i
1

− X
��

i
1

⊆ B
II,R

1

(𝛼,𝛽,k)
(X);

(2) B
I,R

2

(𝛼,𝛽,k)
(X) = B

I,R
1

(𝛼,𝛽,k)
(X) − X

�

i
1

⊆ B
I,R

1

(𝛼,𝛽,k)
(X);

(3) B
II,R

2

(𝛼,𝛽,k)
(X) = B

II,R
1

(𝛼,𝛽,k)
(X) − X

�

i
1

⊆ B
II,R

1

(𝛼,𝛽,k)
(X);

(4) B
II,R

2

(𝛼,𝛽,k)
(X) = B

II,R
1

(𝛼,𝛽,k)
(X) − X

�

i
1

− X
��

i
1

⊆ B
II,R

1

(𝛼,𝛽,k)
(X);

(5) The same to the case in (2); (6) BII,R
1

(�,�,k)
(X) = B

II,R
2

(�,�,k)
(X);

(7) B
II,R

1

(�,�,k)
(X) = B

II,R
2

(�,�,k)
(X);

(8) B
II,R2

(𝛼,𝛽,k)
(X) = B

II,R1

(𝛼,𝛽,k)
(X) − X

��

i1
⊆ B

II,R1

(𝛼,𝛽,k)
(X); (9) The 

same to the case in (3); (10) The same to (7);
(11) B

II,R
1

(�,�,k)
(X) = B

II,R
2

(�,�,k)
(X); (12) B

II,R
2

(�,�,k)
(X) = B

II,R
1

(�,�,k)
(X)

−X
��

i
1

⊆ B
II,R

1

(𝛼,𝛽,k)
(X); (13) The same to (4);

(14) The same to (8); (15) The same to (12); (16) BII,R
2

(�,�,k)

(X) = B
II,R

1

(𝛼,𝛽,k)
(X) − X

�

i
1

− X
��

i
1

⊆ B
II,R

1

(𝛼,𝛽,k)
(X).

From the above 16 cases, we can obtain that 
B
II,R2

(𝛼,𝛽,k)
(X) ⊆ B

II,R1

(𝛼,𝛽,k)
(X) , which means BII,R2

(�,�,k)
(X) ⫋ B

II,R1

(�,�,k)
(X) 
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or BII,R2

(�,�,k)
(X) = B

II,R1

(�,�,k)
(X) . According to the Definition 5.2, 

ΔR is a useful incremental information or useless incremen-
tal information.   □

In Theorem 5.4, take the elements in upper boundary 
region for example, if the attribute increment ΔR only dis-
tinguish the elements in the upper boundary region, there 
are three possible directions for the reclassified elements: (1) 
lower boundary region; (2) positive region; and (3) negative 

region. So the boundary region becomes unchanged or 
smaller. Which means ΔR is the useless incremental infor-
mation or useful incremental information in DqII-DTRS.

Theorem 5.5 Given an information system S = (U,A) with 
a pair of thresholds 𝛼, 𝛽 (0 ≤ 𝛽 < 𝛼 ≤ 1) and the grade k, 
R1 ⊆ R2 ⊆ A. For any target concept X ⊆ U, if the attribute 
increment ΔR = R2 − R1 only can distinguish the elements in 
the positive region in DqII-DTRS model, then the attribute 
increment ΔR is the error-correction incremental informa-
tion or useless incremental information.

Proof Let U∕IND(R1) = {[x]R1
| x ∈ U} = {X1,X2,… ,Xl} 

and BII,R
1

(�,�,k)
(X) = U

II,R
1

(�,�,k)
(X) ∪ L

II,R
1

(�,�,k)
(X) = ∪{X

i
1

, Xi2
,… ,Xiq

} , 

where X
i
1

∈ U∕IND(R
1

),X
i
2

∈ U∕IND(R
1

),… ,X
i
q

∈ U∕

IND(R
1

) . Supposing only one equivalence class is subdi-
vided into two finer equivalence classes, without loss of 
generality, let Xi1

= X
�

i1
∪ X

��

i1
 . Based on the definition of 

DqII-DTRS model, we can get (
|Xi1

∩X|
|Xi1

| ≥ 𝛼) ∧ (|Xi1
∩ X| > k). 

There are also 16 situations regard to X′

i1
 and X′′

i1
 (See 

Table 3).
As BII,R2

(�,�,k)
(X) = U

II,R2

(�,�,k)
(X) ∪ L

I,R2

(�,�,k)
(X) , and all equiva-

lence classes except Xi1
(Xi1

⊆ P
I,R1

(𝛼,𝛽,k)
(X)) keep unchanged, 

so we can get the following results:
(1) B

II,R
2

(𝛼,𝛽,k)
(X) = B

II,R
1

(𝛼,𝛽,k)
(X); (2) B

I,R
1

(𝛼,𝛽,k)
(X) ⊆ B

I,R
1

(𝛼,𝛽,k)

(X) ∪ X
��

i
1

= B
I,R

2

(�,�,k)
(X);

(3) B
I,R

1

(𝛼,𝛽,k)
(X) ⊆ B

I,R
1

(𝛼,𝛽,k)
(X) ∪ X

��

i
1

= B
I,R

2

(𝛼,𝛽,k)
(X); (4) B

II,R
2

(𝛼,𝛽,k)

(X) = B
II,R

1

(�,�,k)
(X);

(5) The same to the case in (2); (6) BI,R
1

(𝛼,𝛽,k)
(X) ⊆ B

I,R
1

(𝛼,𝛽,k)
(X)

∪X
�

i
1

∪ X
��

i
1

= B
I,R

2

(�,�,k)
(X);

(7) B
I,R

1

(𝛼,𝛽,k)
(X) ⊆ B

I,R
1

(𝛼,𝛽,k)
(X) ∪ X

�

i
1

∪ X
��

i
1

= B
I,R

2

(𝛼,𝛽,k)
(X);

(8) B
I,R

1

(𝛼,𝛽,k)
(X) ⊆ B

I,R
1

(𝛼,𝛽,k)
(X) ∪ X

�

i
1

= B
I,R

2

(𝛼,𝛽,k)
(X);

(9) The same to the case in (3); (10) The same to (7); 
(11) B

I,R1

(𝛼,𝛽,k)
(X) ⊆ B

I,R1

(𝛼,𝛽,k)
(X) ∪ X

�

i1
∪ X

��

i1
= B

I,R2

(𝛼,𝛽,k)
(X);

(12) B
I,R1

(𝛼,𝛽,k)
(X) ⊆ B

I,R1

(𝛼,𝛽,k)
(X) ∪ X

�

i1
= B

I,R2

(𝛼,𝛽,k)
(X); (13) The 

same to the case in (4);
(14) The same to (8); (15) The same to (12); 

(16) B
II,R2

(�,�,k)
(X) = B

II,R1

(�,�,k)
(X).

From the above 16 cases, we can obtain that 
B
II,R1

(𝛼,𝛽,k)
(X) ⊆ B

II,R2

(𝛼,𝛽,k)
(X) , which means BII,R1

(�,�,k)
(X) ⫋ B

II,R2

(�,�,k)
(X) 

or BII,R1

(�,�,k)
(X) = B

II,R2

(�,�,k)
(X) . According to the Definition 5.2, 

Table 3  Cases regard to X′

i
1

 and X′′

i
1

 with incremental information

X
′

i
1

X
′′

i
1

|X�

i
1

∩ X|∕|X�

i
1

| |X�

i
1

∩ X| |X��

i
1

∩ X|∕|X��

i
1

| |X��

i
1

∩ X|

(1) ≥ � > k ≥ � > k

⊆ P
II,R

2

(𝛼,𝛽,k)
(X) ⊆ P

II,R
2

(𝛼,𝛽,k)
(X)

(2) ≥ � > k ≥ � ≤ k

⊆ P
II,R

2

(𝛼,𝛽,k)
(X) ⊆ L

II,R
2

(𝛼,𝛽,k)
(X)

(3) ≥ � > k < 𝛼 > k

⊆ P
II,R

2

(𝛼,𝛽,k)
(X) ⊆ U

II,R
2

(𝛼,𝛽,k)
(X)

(4) ≥ � > k < 𝛼 ≤ k

⊆ P
II,R

2

(𝛼,𝛽,k)
(X) ⊆ N

II,R
2

(𝛼,𝛽,k)
(X)

(5) ≥ � ≤ k ≥ � > k

⊆ L
II,R

2

(𝛼,𝛽,k)
(X) ⊆ P

II,R
2

(𝛼,𝛽,k)
(X)

(6) ≥ � ≤ k ≥ � ≤ k

⊆ L
II,R

2

(𝛼,𝛽,k)
(X) ⊆ L

II,R
2

(𝛼,𝛽,k)
(X)

(7) ≥ � ≤ k < 𝛼 > k

⊆ L
II,R

2

(𝛼,𝛽,k)
(X) ⊆ U

II,R
2

(𝛼,𝛽,k)
(X)

(8) ≥ � ≤ k < 𝛼 ≤ k

⊆ L
II,R

2

(𝛼,𝛽,k)
(X) ⊆ N

II,R
2

(𝛼,𝛽,k)
(X)

(9) < 𝛼 > k ≥ � > k

⊆ U
II,R

2

(𝛼,𝛽,k)
(X) ⊆ P

II,R
2

(𝛼,𝛽,k)
(X)

(10) < 𝛼 > k ≥ � ≤ k

⊆ U
II,R

2

(𝛼,𝛽,k)
(X) ⊆ L

II,R
2

(𝛼,𝛽,k)
(X)

(11) < 𝛼 > k < 𝛼 > k

⊆ U
II,R

2

(𝛼,𝛽,k)
(X) ⊆ U

II,R
2

(𝛼,𝛽,k)
(X)

(12) < 𝛼 > k < 𝛼 ≤ k

⊆ U
II,R

2

(𝛼,𝛽,k)
(X) ⊆ N

II,R
2

(𝛼,𝛽,k)
(X)

(13) < 𝛼 ≤ k ≥ � > k

⊆ N
II,R

2

(𝛼,𝛽,k)
(X) ⊆ P

II,R
2

(𝛼,𝛽,k)
(X)

(14) < 𝛼 ≤ k ≥ � ≤ k

⊆ N
II,R

2

(𝛼,𝛽,k)
(X) ⊆ L

II,R
2

(𝛼,𝛽,k)
(X)

(15) < 𝛼 ≤ k < 𝛼 > k

⊆ N
II,R

2

(𝛼,𝛽,k)
(X) ⊆ U

II,R
2

(𝛼,𝛽,k)
(X)

(16) < 𝛼 ≤ k < 𝛼 ≤ k

⊆ N
II,R

2

(𝛼,𝛽,k)
(X) ⊆ N

II,R
2

(𝛼,𝛽,k)
(X)
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ΔR is an error-correction incremental information or useless 
incremental information.   □

In Theorem 5.5, if the attribute increment ΔR only distin-
guish the elements in the positive region in DqI-DTRS, there 
are three possible directions for the reclassified elements: (1) 
upper boundary region; (2) lower boundary region; and (3) 
negative region. So the boundary region becomes larger or 
unchanged. Which means ΔR is the error-correction incre-
mental information or useless incremental information in 
DqII-DTRS.

Theorem 5.6 Given an information system S = (U,A) with 
a pair of thresholds 𝛼, 𝛽 (0 ≤ 𝛽 < 𝛼 ≤ 1) and the grade k, 
R1 ⊆ R2 ⊆ A. For any target concept X ⊆ U, if the attribute 
increment ΔR = R2 − R1 only can distinguish the elements 
in the negative region in DqII-DTRS model, then attribute 
increment ΔR is the error-correction incremental informa-
tion or useless incremental information.

Proof Let U∕IND(R1) = {[x]R1
| x ∈ U} = {X1,X2,… ,Xl} 

and BII,R
1

(�,�,k)
(X) = U

II,R
1

(�,�,k)
(X) ∪ L

II,R
1

(�,�,k)
(X) = ∪{X

i
1

, Xi2
,… ,Xir

} , 

where X
i
1

∈ U∕IND(R
1

),X
i
2

∈ U∕IND(R
1

),… ,X
i
r

∈ U∕

IND(R
1

) . Supposing only one equivalence class is subdi-
vided into two finer equivalence classes, without loss of 
generality, let Xi1

= X
�

i1
∪ X

��

i1
 . Based on the definition of 

DqII-DTRS model, we can get (
|Xi1

∩X|
|Xi1

| < 𝛼) ∧ (|Xi1
∩ X| ≤ k). 

There are also 16 situations regard to X′

i1
 and X′′

i1
 (See 

Table 3).
As BIIR2

(�,�,k)
(X) = U

II,R2

(�,�,k)
(X) ∪ L

I,R2

(�,�,k)
(X) , and all equiva-

lence classes except Xi1
(Xi1

⊆ N
II,R1

(𝛼,𝛽,k)
(X)) keep unchanged, 

so we can get the same results as the 16 situations in Theo-
rem 5.5. We can obtain that BII,R1

(𝛼,𝛽,k)
(X) ⊆ B

II,R2

(𝛼,𝛽,k)
(X) , which 

means BII,R1

(�,�,k)
(X) ⫋ B

II,R2

(�,�,k)
(X) or BII,R1

(�,�,k)
(X) = B

II,R2

(�,�,k)
(X) . 

According to the Definition 5.2, ΔR is an error-correction 
incremental information or useless incremental information.  
 □

In Theorem 5.6, if the attribute increment ΔR only dis-
tinguish the elements in the negative region in DqI-DTRS, 
there are three possible directions for the reclassified ele-
ments: (1) upper boundary region; (2) lower boundary 
region; and (3) positive region. So the boundary region 
becomes larger or unchanged. Which means ΔR is the error-
correction incremental information or useless incremental 
information in DqII-DTRS.

From the above Theorems 5.1-5.6, we can see that (1) if 
the attribute increment ΔR can only distinguish the objects 
in the positive region or negative region in both DqI-DTRS 
and DqII-DTRS, then ΔR is error-correction incremental 
information or useless incremental information, while 
this kind of attribute increment is useless for further clas-
sification in Pawlak rough set model; (2) if the attribute 
increment ΔR can only distinguish the objects in bound-
ary region in both DqI-DTRS and DqII-DTRS, then ΔR 
is useful incremental information or useless incremental 
information.

5.3  An illustrative example for incremental 
information in Dq‑DTRS

Example 5.1 Table 4 is an information system S = (U,A) , 
where U is a universe of discourse which consists of 18 
patients with the clinical features, the attributes a, b, c, d 
and e are Cough, Rhinorrhoea, Myodynia, Diarrhea 
and Nausea, respectively. Consider a target concept 
X = {x3, x4, x5, x6, x7, x8, x9, x10, x14} ,  which represents 
the initial diagnosis of each patient suffering from a cold. 
Suppose R1 = {a, b}, R2 = {a, b, c}, R3 = {a, b, d} and 
R4 = {a, b, e} are four attribute subsets of A.

From the Table 4, we can easily obtain the partitions as 
follows,

Table 4  Information table 
S = (U,A)

U a b c d e U a b c d e

x
1

2 2 3 1 0 x
10

1 0 2 2 1
x
2

2 2 0 1 0 x
11

1 0 2 3 1
x
3

2 2 3 1 0 x
12

1 0 2 2 1
x
4

2 2 0 1 0 x
13

1 0 2 2 1
x
5

2 2 0 1 0 x
14

0 3 1 2 0
x
6

3 1 2 0 2 x
15

0 3 1 2 3
x
7

3 1 2 0 2 x
16

0 3 1 2 0
x
8

1 0 2 3 1 x
17

0 3 1 2 3
x
9

1 0 2 3 1 x
18

0 3 1 2 3
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It is obvious that U∕IND(R2) ⪯ U∕IND(R1) , U∕IND(R
3

) ⪯

U∕IND(R
1

) , and U∕IND(R4) ⪯ U∕IND(R1) . Given two 
parameters (� = 0.60, � = 0.30) and the grade k = 2 . We can 
obtain upper and lower approximations of DqI-DTRS and 
DqII-DTRS models with respect to R1, R2, R3 and R4 in the 
following, respectively.

For the DqI-DTRS model with respect to R1:

The four disjoint regions of X with respect to R1 in DqI-
DTRS which are

For the DqI-DTRS model with respect to R2:

The four disjoint regions of X with respect to R2 in DqI-
DTRS which are

U∕IND(R1) = {{x1, x2, x3, x4, x5}, {x6, x7},

{x8, x9, x10, x11, x12, x13},

{x14, x15, x16, x17, x18}},

U∕IND(R2) = {{x1, x3}, {x2, x4, x5}, {x6, x7},

{x8, x9, x10, x11, x12, x13},

{x14, x15, x16, x17, x18}},

U∕IND(R3) = {{x1, x2, x3, x4, x5}, {x6, x7},

{x8, x9, x11}, {x10, x12, x13},

{x14, x15, x16, x17, x18}},

U∕IND(R4) = {{x1, x2, x3, x4, x5}, {x6, x7},

{x8, x9, x10, x11, x12, x13},

{x14, x16}, {x15, x17, x18}}.

R1(�,�)(X) ={x1, x2, x3, x4, x5, x6, x7,

x8, x9, x10, x11, x12, x13},

R1
k
(X) ={x1, x2, x3, x4, x5, x6, x7}.

P
I,R1

(�,�,k)
(X) = {x1, x2, x3, x4, x5, x6, x7};

N
I,R1

(�,�,k)
(X) = {x14, x15, x16, x17, x18};

U
I,R1

(�,�,k)
(X) = {x8, x9, x10, x11, x12, x13};

L
I,R1

(�,�,k)
(X) = �.

R2(�,�)(X) ={x1, x2, x3, x4, x5, x6, x7,

x8, x9, x10, x11, x12, x13},

R2
k
(X) ={x1, x2, x3, x4, x5, x6, x7}.

P
I,R2

(�,�,k)
(X) ={x1, x2, x3, x4, x5, x6, x7};

N
I,R2

(�,�,k)
(X) ={x14, x15, x16, x17, x18};

U
I,R2

(�,�,k)
(X) ={x8, x9, x10, x11, x12, x13};

L
I,R2

(�,�,k)
(X) =�.

For the DqI-DTRS model with respect to R3:

The four disjoint regions of X with respect to R3 in DqI-
DTRS which are

For the DqI-DTRS model with respect to R4:

The four disjoint regions of X with respect to R4 in DqI-
DTRS which are

It can be seen from the disjoint regions of X in DqI-DTRS 
with respect to R1,R2,R3 and R4:

• The boundary region of R2 is equal to the boundary 
region of R1 when the equivalence classes are subdivided 
into many finer equivalence classes, which including 
both upper boundary region and lower boundary region. 
The positive and negative regions of R2 are equal to ones 
of R1 . Then the attribute increment ΔR = R2 − R1 = {c} 
is useless incremental information.

• Compared with regions of R1 , the boundary region 
becomes smaller and the positive region becomes 
much bigger of R3 when the equivalence classes con-
tained in the boundary region are subdivided into many 
finer equivalence classes. Then the attribute increment 
ΔR = R3 − R1 = {d} is useful incremental information.

R3(�,�)(X) = {x1, x2, x3, x4, x5, x6, x7,

x8, x9, x10, x11, x12, x13},

R3
k
(X) = {x1, x2, x3, x4, x5, x6, x7,

x8, x9, x10, x11, x12, x13}.

P
I,R3

(�,�,k)
(X) ={x1, x2, x3, x4, x5, x6, x7,

x8, x9, x10, x11, x12, x13};

N
I,R3

(�,�,k)
(X) ={x14, x15, x16, x17, x18};

U
I,R3

(�,�,k)
(X) =�;

L
I,R3

(�,�,k)
(X) =�.

R4(�,�)(X) ={x1, x2, x3, x4, x5, x6, x7,

x8, x9, x10, x11, x12, x13, x14, x16},

R4
k
(X) ={x1, x2, x3, x4, x5, x14, x16}.

P
I,R4

(�,�,k)
(X) = {x1, x2, x3, x4, x5, x14, x16};

N
I,R4

(�,�,k)
(X) = {x15, x17, x18};

U
I,R4

(�,�,k)
(X) = {x6, x7, x8, x9, x10, x11, x12, x13};

L
I,R4

(�,�,k)
(X) = �.
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• Compared with regions of R1 , the boundary region 
becomes bigger, the negative region becomes 
smaller of R4 . The positive regions between R1 and 
R4 cannot be compared. Then the attribute increment 
ΔR = R4 − R1 = {e} is error-correction incremental 
information.

For the DqII-DTRS model with respect to R1:

The four disjoint regions of X with respect to R1 in DqII-
DTRS which are

For the DqII-DTRS model with respect to R2:

The four disjoint regions of X with respect to R2 in DqII-
DTRS which are

For the DqII-DTRS model with respect to R2:

The four disjoint regions of X with respect to R3 in DqII-
DTRS which are

R1k(X) = {x1, x2, x3, x4, x5, x8, x9, x10, x11, x12, x13},

R1
(�,�)

(X) = {x1, x2, x3, x4, x5, x6, x7}.

P
II,R1

(�,�,k)
(X) = {x1, x2, x3, x4, x5};

N
II,R1

(�,�,k)
(X) = {x14, x15, x16, x17, x18};

U
II,R1

(�,�,k)
(X) = {x8, x9, x10, x11, x12, x13};

L
II,R1

(�,�,k)
(X) = {x6, x7}.

R2k(X) = {x8, x9, x10, x11, x12, x13},

R2
(�,�)

(X) = {x2, x4, x5, x6, x7}.

P
II,R2

(�,�,k)
(X) = �;

N
II,R2

(�,�,k)
(X) = {x1, x3, x14, x15, x16, x17, x18};

U
II,R2

(�,�,k)
(X) = {x8, x9, x10, x11, x12, x13};

L
II,R2

(�,�,k)
(X) = {x2, x4, x5, x6, x7}.

R3k(X) = {x1, x2, x3, x4, x5},

R3
(�,�)

(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x11}.

P
II,R3

(�,�,k)
(X) = {x1, x2, x3, x4, x5};

N
II,R3

(�,�,k)
(X) = {x10, x12, x13, x14, x15, x16, x17, x18};

U
II,R3

(�,�,k)
(X) = �;

L
II,R3

(�,�,k)
(X) = {x6, x7, x8, x9, x11}.

For the DqII-DTRS model with respect to R2:

The four disjoint regions of X with respect to R4 in DqII-
DTRS which are

It can be seen from the disjoint regions of X in DqII-DTRS 
with respect to R1,R2,R3 and R4:

• Compared with regions of R1 , both the boundary region 
and negative region of R2 become much bigger, and the 
positive region of R2 becomes smaller. Then the attribute 
increment ΔR = R2 − R1 = {c} is error-correction incre-
mental information.

• Compared with regions of R1 , the boundary region of R3 
becomes smaller and the negative region of R3 becomes 
much bigger when the equivalence classes contained 
in the boundary region are subdivided into many finer 
equivalence classes. And the positive region of R3 is 
equal to the one of R1 . Then the attribute increment 
ΔR = R3 − R1 = {d} is useful incremental information.

• The boundary region of R4 is equal to the boundary 
region of R1 when the equivalence classes are subdivided 
into many finer equivalence classes, which including 
both upper boundary region and lower boundary region. 
The positive and negative regions of R4 are equal to ones 
of R1 . Then the attribute increment ΔR = R4 − R1 = {e} 
is useless incremental information.

The comparisons on disjoint regions changed with incre-
mental attributes among Pawlak rough set, DTRS, Dq-
DTRS (including DqI-DTRS and DqII-DTRS) are shown in 
Table 5. Based on the analysis in reference [68], the attribute 
increments {b} and {c} are attributed to useless incremen-
tal information, and the attribute increment {d} is attrib-
uted to useful incremental information in Pawlak rough set 
model; the attribute increments {b} and {d} are attributed to 
error-correction incremental information, and the attribute 
increment {c} is attributed to useful incremental informa-
tion in DTRS model. In DqI-DTRS model, {b} , {c} and {d} 
are attributed to useless incremental information, useful 
incremental information and error-correction incremental 
information, respectively. In DqII-DTRS model, {b} , {c} and 

R4k(X) = {x1, x2, x3, x4, x5, x8, x9, x10, x11, x12, x13},

R4
(�,�)

(X) = {x1, x2, x3, x4, x5, x6, x7}.

P
II,R4

(�,�,k)
(X) = {x1, x2, x3, x4, x5};

N
II,R4

(�,�,k)
(X) = {x14, x15, x16, x17, x18};

U
II,R4

(�,�,k)
(X) = {x8, x9, x10, x11, x12, x13};

L
II,R4

(�,�,k)
(X) = {x6, x7}.
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{d} are attributed to error-correction incremental informa-
tion, useful incremental information and useless incremental 
information, respectively.

6  Conclusions

In this paper, we make further studies of Dq-DTRS models 
by discussing the uncertainty of disjoint regions and also 
by exploring the disjoint regions changing with attribute 
increment. The research on uncertainty in rough set theory 
plays an important role in the knowledge acquisition and 
approximate reasoning. The superiority of Dq-DTRS model 
for the decision-making applications has been explained in 
the previous work [23]. It shows that although Dq-DTRS 
model is a directional expansion of Pawlak rough set with 
double quantification of the relative information and abso-
lute information, it is very different from Pawlak rough set 
in many aspects, such as: the formation of disjoint regions 
and the extraction of decision rules. So far, there are many 
typical measure methods for the Pawlak rough set and PRS 
[2, 4, 9, 12, 28, 68], but there are few studies conducted 
on the uncertainty measure for Dq-DTRS model. Among 
these typical measure methods, Zhang et al. [68] presented 
a novel uncertainty measure for the PRS model from three 
regions and defined three kinds of incremental information 
for the PRS model and its generalizations, which provides 
us a research direction to study uncertainty measure for the 
Dq-DTRS model. We know that for the different general-
ized rough set model, even the same measure method will 
have different properties and presentation characteristics. 
This paper mainly analyzes the fuzziness of four disjoint 
regions in Dq-DTRS and addresses the change of uncer-
tainty of four regions along with the change of parameters 
and the grade, and then the change regularities of disjoint 
regions in Dq-DTRS with changing approximation spaces 
are studied correspondingly. In the future work, how to use 
the fuzziness and three kinds of classification of incremental 
information to explore the context of attribute reduction and 
how to embody the two kinds of quantitative information in 
the fuzziness of four disjoint regions are worth investigating.
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